@inproceedings{le-ferrand-etal-2023-application,
title = "Application of Speech Processes for the Documentation of Kr{\'e}y{\`o}l Gwadloup{\'e}yen",
author = "Le Ferrand, {\'E}ric and
Henri, Fabiola and
Lecouteux, Benjamin and
Schang, Emmanuel",
editor = "Serikov, Oleg and
Voloshina, Ekaterina and
Postnikova, Anna and
Klyachko, Elena and
Vylomova, Ekaterina and
Shavrina, Tatiana and
Le Ferrand, Eric and
Malykh, Valentin and
Tyers, Francis and
Arkhangelskiy, Timofey and
Mikhailov, Vladislav",
booktitle = "Proceedings of the Second Workshop on NLP Applications to Field Linguistics",
month = may,
year = "2023",
address = "Dubrovnik, Croatia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.fieldmatters-1.2/",
doi = "10.18653/v1/2023.fieldmatters-1.2",
pages = "17--22",
abstract = "In recent times, there has been a growing number of research studies focused on addressing the challenges posed by low-resource languages and the transcription bottleneck phenomenon. This phenomenon has driven the development of speech recognition methods to transcribe regional and Indigenous languages automatically. Although there is much talk about bridging the gap between speech technologies and field linguistics, there is a lack of documented efficient communication between NLP experts and documentary linguists. The models created for low-resource languages often remain within the confines of computer science departments, while documentary linguistics remain attached to traditional transcription workflows. This paper presents the early stage of a collaboration between NLP experts and field linguists, resulting in the successful transcription of Kr{\'e}y{\`o}l Gwadloup{\'e}yen using speech recognition technology."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="le-ferrand-etal-2023-application">
<titleInfo>
<title>Application of Speech Processes for the Documentation of Kréyòl Gwadloupéyen</title>
</titleInfo>
<name type="personal">
<namePart type="given">Éric</namePart>
<namePart type="family">Le Ferrand</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fabiola</namePart>
<namePart type="family">Henri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Benjamin</namePart>
<namePart type="family">Lecouteux</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Emmanuel</namePart>
<namePart type="family">Schang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Second Workshop on NLP Applications to Field Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Oleg</namePart>
<namePart type="family">Serikov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Voloshina</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Postnikova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elena</namePart>
<namePart type="family">Klyachko</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Vylomova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tatiana</namePart>
<namePart type="family">Shavrina</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eric</namePart>
<namePart type="family">Le Ferrand</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Valentin</namePart>
<namePart type="family">Malykh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Francis</namePart>
<namePart type="family">Tyers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Timofey</namePart>
<namePart type="family">Arkhangelskiy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vladislav</namePart>
<namePart type="family">Mikhailov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dubrovnik, Croatia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In recent times, there has been a growing number of research studies focused on addressing the challenges posed by low-resource languages and the transcription bottleneck phenomenon. This phenomenon has driven the development of speech recognition methods to transcribe regional and Indigenous languages automatically. Although there is much talk about bridging the gap between speech technologies and field linguistics, there is a lack of documented efficient communication between NLP experts and documentary linguists. The models created for low-resource languages often remain within the confines of computer science departments, while documentary linguistics remain attached to traditional transcription workflows. This paper presents the early stage of a collaboration between NLP experts and field linguists, resulting in the successful transcription of Kréyòl Gwadloupéyen using speech recognition technology.</abstract>
<identifier type="citekey">le-ferrand-etal-2023-application</identifier>
<identifier type="doi">10.18653/v1/2023.fieldmatters-1.2</identifier>
<location>
<url>https://aclanthology.org/2023.fieldmatters-1.2/</url>
</location>
<part>
<date>2023-05</date>
<extent unit="page">
<start>17</start>
<end>22</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Application of Speech Processes for the Documentation of Kréyòl Gwadloupéyen
%A Le Ferrand, Éric
%A Henri, Fabiola
%A Lecouteux, Benjamin
%A Schang, Emmanuel
%Y Serikov, Oleg
%Y Voloshina, Ekaterina
%Y Postnikova, Anna
%Y Klyachko, Elena
%Y Vylomova, Ekaterina
%Y Shavrina, Tatiana
%Y Le Ferrand, Eric
%Y Malykh, Valentin
%Y Tyers, Francis
%Y Arkhangelskiy, Timofey
%Y Mikhailov, Vladislav
%S Proceedings of the Second Workshop on NLP Applications to Field Linguistics
%D 2023
%8 May
%I Association for Computational Linguistics
%C Dubrovnik, Croatia
%F le-ferrand-etal-2023-application
%X In recent times, there has been a growing number of research studies focused on addressing the challenges posed by low-resource languages and the transcription bottleneck phenomenon. This phenomenon has driven the development of speech recognition methods to transcribe regional and Indigenous languages automatically. Although there is much talk about bridging the gap between speech technologies and field linguistics, there is a lack of documented efficient communication between NLP experts and documentary linguists. The models created for low-resource languages often remain within the confines of computer science departments, while documentary linguistics remain attached to traditional transcription workflows. This paper presents the early stage of a collaboration between NLP experts and field linguists, resulting in the successful transcription of Kréyòl Gwadloupéyen using speech recognition technology.
%R 10.18653/v1/2023.fieldmatters-1.2
%U https://aclanthology.org/2023.fieldmatters-1.2/
%U https://doi.org/10.18653/v1/2023.fieldmatters-1.2
%P 17-22
Markdown (Informal)
[Application of Speech Processes for the Documentation of Kréyòl Gwadloupéyen](https://aclanthology.org/2023.fieldmatters-1.2/) (Le Ferrand et al., FieldMatters 2023)
ACL