@inproceedings{vasylenko-etal-2023-incorporating,
title = "Incorporating Graph Information in Transformer-based {AMR} Parsing",
author = "Vasylenko, Pavlo and
Huguet Cabot, Pere Llu{\'i}s and
Mart{\'i}nez Lorenzo, Abelardo Carlos and
Navigli, Roberto",
editor = "Rogers, Anna and
Boyd-Graber, Jordan and
Okazaki, Naoaki",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2023",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.findings-acl.125/",
doi = "10.18653/v1/2023.findings-acl.125",
pages = "1995--2011",
abstract = "Abstract Meaning Representation (AMR) is a Semantic Parsing formalism that aims at providing a semantic graph abstraction representing a given text. Current approaches are based on autoregressive language models such as BART or T5, fine-tuned through Teacher Forcing to obtain a linearized version of the AMR graph from a sentence. In this paper, we present LeakDistill, a model and method that explores a modification to the Transformer architecture, using structural adapters to explicitly incorporate graph information into the learned representations and improve AMR parsing performance. Our experiments show how, by employing word-to-node alignment to embed graph structural information into the encoder at training time, we can obtain state-of-the-art AMR parsing through self-knowledge distillation, even without the use of additional data. We release the code at [\url{http://www.github.com/sapienzanlp/LeakDistill}](\url{http://www.github.com/sapienzanlp/LeakDistill})."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="vasylenko-etal-2023-incorporating">
<titleInfo>
<title>Incorporating Graph Information in Transformer-based AMR Parsing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Pavlo</namePart>
<namePart type="family">Vasylenko</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pere</namePart>
<namePart type="given">Lluís</namePart>
<namePart type="family">Huguet Cabot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Abelardo</namePart>
<namePart type="given">Carlos</namePart>
<namePart type="family">Martínez Lorenzo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roberto</namePart>
<namePart type="family">Navigli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2023</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Boyd-Graber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naoaki</namePart>
<namePart type="family">Okazaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Abstract Meaning Representation (AMR) is a Semantic Parsing formalism that aims at providing a semantic graph abstraction representing a given text. Current approaches are based on autoregressive language models such as BART or T5, fine-tuned through Teacher Forcing to obtain a linearized version of the AMR graph from a sentence. In this paper, we present LeakDistill, a model and method that explores a modification to the Transformer architecture, using structural adapters to explicitly incorporate graph information into the learned representations and improve AMR parsing performance. Our experiments show how, by employing word-to-node alignment to embed graph structural information into the encoder at training time, we can obtain state-of-the-art AMR parsing through self-knowledge distillation, even without the use of additional data. We release the code at [http://www.github.com/sapienzanlp/LeakDistill](http://www.github.com/sapienzanlp/LeakDistill).</abstract>
<identifier type="citekey">vasylenko-etal-2023-incorporating</identifier>
<identifier type="doi">10.18653/v1/2023.findings-acl.125</identifier>
<location>
<url>https://aclanthology.org/2023.findings-acl.125/</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>1995</start>
<end>2011</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Incorporating Graph Information in Transformer-based AMR Parsing
%A Vasylenko, Pavlo
%A Huguet Cabot, Pere Lluís
%A Martínez Lorenzo, Abelardo Carlos
%A Navigli, Roberto
%Y Rogers, Anna
%Y Boyd-Graber, Jordan
%Y Okazaki, Naoaki
%S Findings of the Association for Computational Linguistics: ACL 2023
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F vasylenko-etal-2023-incorporating
%X Abstract Meaning Representation (AMR) is a Semantic Parsing formalism that aims at providing a semantic graph abstraction representing a given text. Current approaches are based on autoregressive language models such as BART or T5, fine-tuned through Teacher Forcing to obtain a linearized version of the AMR graph from a sentence. In this paper, we present LeakDistill, a model and method that explores a modification to the Transformer architecture, using structural adapters to explicitly incorporate graph information into the learned representations and improve AMR parsing performance. Our experiments show how, by employing word-to-node alignment to embed graph structural information into the encoder at training time, we can obtain state-of-the-art AMR parsing through self-knowledge distillation, even without the use of additional data. We release the code at [http://www.github.com/sapienzanlp/LeakDistill](http://www.github.com/sapienzanlp/LeakDistill).
%R 10.18653/v1/2023.findings-acl.125
%U https://aclanthology.org/2023.findings-acl.125/
%U https://doi.org/10.18653/v1/2023.findings-acl.125
%P 1995-2011
Markdown (Informal)
[Incorporating Graph Information in Transformer-based AMR Parsing](https://aclanthology.org/2023.findings-acl.125/) (Vasylenko et al., Findings 2023)
ACL