@inproceedings{ravfogel-etal-2023-conformal,
title = "Conformal Nucleus Sampling",
author = "Ravfogel, Shauli and
Goldberg, Yoav and
Goldberger, Jacob",
editor = "Rogers, Anna and
Boyd-Graber, Jordan and
Okazaki, Naoaki",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2023",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.findings-acl.3/",
doi = "10.18653/v1/2023.findings-acl.3",
pages = "27--34",
abstract = "Language models generate text based on successively sampling the next word. A decoding procedure based on nucleus (top-$p$) sampling chooses from the smallest possible set of words whose cumulative probability exceeds the probability $p$. In this work, we assess whether a top-$p$ set is indeed aligned with its probabilistic meaning in various linguistic contexts.We employ conformal prediction, a calibration procedure that focuses on the construction of minimal prediction sets according to a desired confidence level, to calibrate the parameter $p$ as a function of the entropy of the next word distribution. We find that OPT models are overconfident, and that calibration shows a moderate inverse scaling with model size."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ravfogel-etal-2023-conformal">
<titleInfo>
<title>Conformal Nucleus Sampling</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shauli</namePart>
<namePart type="family">Ravfogel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Goldberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jacob</namePart>
<namePart type="family">Goldberger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2023</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Boyd-Graber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naoaki</namePart>
<namePart type="family">Okazaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Language models generate text based on successively sampling the next word. A decoding procedure based on nucleus (top-p) sampling chooses from the smallest possible set of words whose cumulative probability exceeds the probability p. In this work, we assess whether a top-p set is indeed aligned with its probabilistic meaning in various linguistic contexts.We employ conformal prediction, a calibration procedure that focuses on the construction of minimal prediction sets according to a desired confidence level, to calibrate the parameter p as a function of the entropy of the next word distribution. We find that OPT models are overconfident, and that calibration shows a moderate inverse scaling with model size.</abstract>
<identifier type="citekey">ravfogel-etal-2023-conformal</identifier>
<identifier type="doi">10.18653/v1/2023.findings-acl.3</identifier>
<location>
<url>https://aclanthology.org/2023.findings-acl.3/</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>27</start>
<end>34</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Conformal Nucleus Sampling
%A Ravfogel, Shauli
%A Goldberg, Yoav
%A Goldberger, Jacob
%Y Rogers, Anna
%Y Boyd-Graber, Jordan
%Y Okazaki, Naoaki
%S Findings of the Association for Computational Linguistics: ACL 2023
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F ravfogel-etal-2023-conformal
%X Language models generate text based on successively sampling the next word. A decoding procedure based on nucleus (top-p) sampling chooses from the smallest possible set of words whose cumulative probability exceeds the probability p. In this work, we assess whether a top-p set is indeed aligned with its probabilistic meaning in various linguistic contexts.We employ conformal prediction, a calibration procedure that focuses on the construction of minimal prediction sets according to a desired confidence level, to calibrate the parameter p as a function of the entropy of the next word distribution. We find that OPT models are overconfident, and that calibration shows a moderate inverse scaling with model size.
%R 10.18653/v1/2023.findings-acl.3
%U https://aclanthology.org/2023.findings-acl.3/
%U https://doi.org/10.18653/v1/2023.findings-acl.3
%P 27-34
Markdown (Informal)
[Conformal Nucleus Sampling](https://aclanthology.org/2023.findings-acl.3/) (Ravfogel et al., Findings 2023)
ACL
- Shauli Ravfogel, Yoav Goldberg, and Jacob Goldberger. 2023. Conformal Nucleus Sampling. In Findings of the Association for Computational Linguistics: ACL 2023, pages 27–34, Toronto, Canada. Association for Computational Linguistics.