@inproceedings{zhang-etal-2023-multi,
title = "Multi-Relational Probabilistic Event Representation Learning via Projected {G}aussian Embedding",
author = "Zhang, Linhai and
Zhang, Congzhi and
Zhou, Deyu",
editor = "Rogers, Anna and
Boyd-Graber, Jordan and
Okazaki, Naoaki",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2023",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.findings-acl.384/",
doi = "10.18653/v1/2023.findings-acl.384",
pages = "6162--6174",
abstract = "Event representation learning has been shown beneficial in various downstream tasks. Current event representation learning methods, which mainly focus on capturing the semantics of events via deterministic vector embeddings, have made notable progress. However, they ignore two important properties: the multiple relations between events and the uncertainty within events. In this paper, we propose a novel approach to learning multi-relational probabilistic event embeddings based on contrastive learning. Specifically, the proposed method consists of three major modules, a multi-relational event generation module to automatically generate multi-relational training data, a probabilistic event encoding module to model uncertainty of events by Gaussian density embeddings, and a relation-aware projection module to adapt unseen relations by projecting Gaussian embeddings into relation-aware subspaces. Moreover, a novel contrastive learning loss is elaborately designed for learning the multi-relational probabilistic embeddings. Since the existing benchmarks for event representation learning ignore relations and uncertainty of events, a novel dataset named MRPES is constructed to investigate whether multiple relations between events and uncertainty within events are learned. Experimental results show that the proposed approach outperforms other state-of-the-art baselines on both existing and newly constructed datasets."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-etal-2023-multi">
<titleInfo>
<title>Multi-Relational Probabilistic Event Representation Learning via Projected Gaussian Embedding</title>
</titleInfo>
<name type="personal">
<namePart type="given">Linhai</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Congzhi</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Deyu</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2023</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Boyd-Graber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naoaki</namePart>
<namePart type="family">Okazaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Event representation learning has been shown beneficial in various downstream tasks. Current event representation learning methods, which mainly focus on capturing the semantics of events via deterministic vector embeddings, have made notable progress. However, they ignore two important properties: the multiple relations between events and the uncertainty within events. In this paper, we propose a novel approach to learning multi-relational probabilistic event embeddings based on contrastive learning. Specifically, the proposed method consists of three major modules, a multi-relational event generation module to automatically generate multi-relational training data, a probabilistic event encoding module to model uncertainty of events by Gaussian density embeddings, and a relation-aware projection module to adapt unseen relations by projecting Gaussian embeddings into relation-aware subspaces. Moreover, a novel contrastive learning loss is elaborately designed for learning the multi-relational probabilistic embeddings. Since the existing benchmarks for event representation learning ignore relations and uncertainty of events, a novel dataset named MRPES is constructed to investigate whether multiple relations between events and uncertainty within events are learned. Experimental results show that the proposed approach outperforms other state-of-the-art baselines on both existing and newly constructed datasets.</abstract>
<identifier type="citekey">zhang-etal-2023-multi</identifier>
<identifier type="doi">10.18653/v1/2023.findings-acl.384</identifier>
<location>
<url>https://aclanthology.org/2023.findings-acl.384/</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>6162</start>
<end>6174</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multi-Relational Probabilistic Event Representation Learning via Projected Gaussian Embedding
%A Zhang, Linhai
%A Zhang, Congzhi
%A Zhou, Deyu
%Y Rogers, Anna
%Y Boyd-Graber, Jordan
%Y Okazaki, Naoaki
%S Findings of the Association for Computational Linguistics: ACL 2023
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F zhang-etal-2023-multi
%X Event representation learning has been shown beneficial in various downstream tasks. Current event representation learning methods, which mainly focus on capturing the semantics of events via deterministic vector embeddings, have made notable progress. However, they ignore two important properties: the multiple relations between events and the uncertainty within events. In this paper, we propose a novel approach to learning multi-relational probabilistic event embeddings based on contrastive learning. Specifically, the proposed method consists of three major modules, a multi-relational event generation module to automatically generate multi-relational training data, a probabilistic event encoding module to model uncertainty of events by Gaussian density embeddings, and a relation-aware projection module to adapt unseen relations by projecting Gaussian embeddings into relation-aware subspaces. Moreover, a novel contrastive learning loss is elaborately designed for learning the multi-relational probabilistic embeddings. Since the existing benchmarks for event representation learning ignore relations and uncertainty of events, a novel dataset named MRPES is constructed to investigate whether multiple relations between events and uncertainty within events are learned. Experimental results show that the proposed approach outperforms other state-of-the-art baselines on both existing and newly constructed datasets.
%R 10.18653/v1/2023.findings-acl.384
%U https://aclanthology.org/2023.findings-acl.384/
%U https://doi.org/10.18653/v1/2023.findings-acl.384
%P 6162-6174
Markdown (Informal)
[Multi-Relational Probabilistic Event Representation Learning via Projected Gaussian Embedding](https://aclanthology.org/2023.findings-acl.384/) (Zhang et al., Findings 2023)
ACL