@inproceedings{chen-yang-2023-controllable,
title = "Controllable Conversation Generation with Conversation Structures via Diffusion Models",
author = "Chen, Jiaao and
Yang, Diyi",
editor = "Rogers, Anna and
Boyd-Graber, Jordan and
Okazaki, Naoaki",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2023",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.findings-acl.454/",
doi = "10.18653/v1/2023.findings-acl.454",
pages = "7238--7251",
abstract = "Generating coherent conversation is an important and challenging long text generation task, as it has various applications such as daily entertainment, children education or building conversational AI to facilitate human-computer interaction. However, current generation models often fail to effectively utilize rich linguistic and world knowledge to generate conversations just like human. In this work, we introduce a novel conversation generation framework to effectively incorporate human knowledge and conversation structures with both controllability and interpretability for better conversation generation. Specifically, we first generate the prototype conversations from short descriptions. We then gradually and strategically incorporate different levels of conversation structures including the action triples, dialogue acts and discourse relations via diffusion models to directly edit the prototype conversations. We demonstrate the effectiveness of our framework through experiments on two datasets by comparing our method with the state-of-the-art baseline models."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chen-yang-2023-controllable">
<titleInfo>
<title>Controllable Conversation Generation with Conversation Structures via Diffusion Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jiaao</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Diyi</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2023</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Boyd-Graber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naoaki</namePart>
<namePart type="family">Okazaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Generating coherent conversation is an important and challenging long text generation task, as it has various applications such as daily entertainment, children education or building conversational AI to facilitate human-computer interaction. However, current generation models often fail to effectively utilize rich linguistic and world knowledge to generate conversations just like human. In this work, we introduce a novel conversation generation framework to effectively incorporate human knowledge and conversation structures with both controllability and interpretability for better conversation generation. Specifically, we first generate the prototype conversations from short descriptions. We then gradually and strategically incorporate different levels of conversation structures including the action triples, dialogue acts and discourse relations via diffusion models to directly edit the prototype conversations. We demonstrate the effectiveness of our framework through experiments on two datasets by comparing our method with the state-of-the-art baseline models.</abstract>
<identifier type="citekey">chen-yang-2023-controllable</identifier>
<identifier type="doi">10.18653/v1/2023.findings-acl.454</identifier>
<location>
<url>https://aclanthology.org/2023.findings-acl.454/</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>7238</start>
<end>7251</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Controllable Conversation Generation with Conversation Structures via Diffusion Models
%A Chen, Jiaao
%A Yang, Diyi
%Y Rogers, Anna
%Y Boyd-Graber, Jordan
%Y Okazaki, Naoaki
%S Findings of the Association for Computational Linguistics: ACL 2023
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F chen-yang-2023-controllable
%X Generating coherent conversation is an important and challenging long text generation task, as it has various applications such as daily entertainment, children education or building conversational AI to facilitate human-computer interaction. However, current generation models often fail to effectively utilize rich linguistic and world knowledge to generate conversations just like human. In this work, we introduce a novel conversation generation framework to effectively incorporate human knowledge and conversation structures with both controllability and interpretability for better conversation generation. Specifically, we first generate the prototype conversations from short descriptions. We then gradually and strategically incorporate different levels of conversation structures including the action triples, dialogue acts and discourse relations via diffusion models to directly edit the prototype conversations. We demonstrate the effectiveness of our framework through experiments on two datasets by comparing our method with the state-of-the-art baseline models.
%R 10.18653/v1/2023.findings-acl.454
%U https://aclanthology.org/2023.findings-acl.454/
%U https://doi.org/10.18653/v1/2023.findings-acl.454
%P 7238-7251
Markdown (Informal)
[Controllable Conversation Generation with Conversation Structures via Diffusion Models](https://aclanthology.org/2023.findings-acl.454/) (Chen & Yang, Findings 2023)
ACL