@inproceedings{javorsky-etal-2023-assessing,
title = "Assessing Word Importance Using Models Trained for Semantic Tasks",
author = "Javorsk{\'y}, D{\'a}vid and
Bojar, Ond{\v{r}}ej and
Yvon, Fran{\c{c}}ois",
editor = "Rogers, Anna and
Boyd-Graber, Jordan and
Okazaki, Naoaki",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2023",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.findings-acl.563",
doi = "10.18653/v1/2023.findings-acl.563",
pages = "8846--8856",
abstract = "Many NLP tasks require to automatically identify the most significant words in a text. In this work, we derive word significance from models trained to solve semantic task: Natural Language Inference and Paraphrase Identification. Using an attribution method aimed to explain the predictions of these models, we derive importance scores for each input token. We evaluate their relevance using a so-called cross-task evaluation: Analyzing the performance of one model on an input masked according to the other model{'}s weight, we show that our method is robust with respect to the choice of the initial task. Additionally, we investigate the scores from the syntax point of view and observe interesting patterns, e.g. words closer to the root of a syntactic tree receive higher importance scores. Altogether, these observations suggest that our method can be used to identify important words in sentences without any explicit word importance labeling in training.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="javorsky-etal-2023-assessing">
<titleInfo>
<title>Assessing Word Importance Using Models Trained for Semantic Tasks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dávid</namePart>
<namePart type="family">Javorský</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ondřej</namePart>
<namePart type="family">Bojar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">François</namePart>
<namePart type="family">Yvon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2023</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Boyd-Graber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naoaki</namePart>
<namePart type="family">Okazaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Many NLP tasks require to automatically identify the most significant words in a text. In this work, we derive word significance from models trained to solve semantic task: Natural Language Inference and Paraphrase Identification. Using an attribution method aimed to explain the predictions of these models, we derive importance scores for each input token. We evaluate their relevance using a so-called cross-task evaluation: Analyzing the performance of one model on an input masked according to the other model’s weight, we show that our method is robust with respect to the choice of the initial task. Additionally, we investigate the scores from the syntax point of view and observe interesting patterns, e.g. words closer to the root of a syntactic tree receive higher importance scores. Altogether, these observations suggest that our method can be used to identify important words in sentences without any explicit word importance labeling in training.</abstract>
<identifier type="citekey">javorsky-etal-2023-assessing</identifier>
<identifier type="doi">10.18653/v1/2023.findings-acl.563</identifier>
<location>
<url>https://aclanthology.org/2023.findings-acl.563</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>8846</start>
<end>8856</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Assessing Word Importance Using Models Trained for Semantic Tasks
%A Javorský, Dávid
%A Bojar, Ondřej
%A Yvon, François
%Y Rogers, Anna
%Y Boyd-Graber, Jordan
%Y Okazaki, Naoaki
%S Findings of the Association for Computational Linguistics: ACL 2023
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F javorsky-etal-2023-assessing
%X Many NLP tasks require to automatically identify the most significant words in a text. In this work, we derive word significance from models trained to solve semantic task: Natural Language Inference and Paraphrase Identification. Using an attribution method aimed to explain the predictions of these models, we derive importance scores for each input token. We evaluate their relevance using a so-called cross-task evaluation: Analyzing the performance of one model on an input masked according to the other model’s weight, we show that our method is robust with respect to the choice of the initial task. Additionally, we investigate the scores from the syntax point of view and observe interesting patterns, e.g. words closer to the root of a syntactic tree receive higher importance scores. Altogether, these observations suggest that our method can be used to identify important words in sentences without any explicit word importance labeling in training.
%R 10.18653/v1/2023.findings-acl.563
%U https://aclanthology.org/2023.findings-acl.563
%U https://doi.org/10.18653/v1/2023.findings-acl.563
%P 8846-8856
Markdown (Informal)
[Assessing Word Importance Using Models Trained for Semantic Tasks](https://aclanthology.org/2023.findings-acl.563) (Javorský et al., Findings 2023)
ACL