@inproceedings{chen-etal-2023-smart,
title = "Smart {\textquotedblleft}Chef{\textquotedblright}: Verifying the Effect of Role-based Paraphrasing for Aspect Term Extraction",
author = "Chen, Jiaxiang and
Hong, Yu and
Xu, Qingting and
Yao, Jianmin",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2023",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.findings-emnlp.144/",
doi = "10.18653/v1/2023.findings-emnlp.144",
pages = "2190--2197",
abstract = "We tackle Aspect Term Extraction (ATE), a task of automatically extracting aspect terms from sentences. The current Pretrained Language Model (PLM) based extractors have achieved significant improvements. They primarily benefit from context-aware encoding. However, a considerable number of sentences in ATE corpora contain uninformative or low-quality contexts. Such sentences frequently act as {\textquotedblleft}troublemakers{\textquotedblright} during test. In this study, we explore the context-oriented quality improvement method. Specifically, we propose to automatically rewrite the sentences from the perspectives of virtual experts with different roles, such as a {\textquotedblleft}chef{\textquotedblright} in the restaurant domain. On this basis, we perform ATE over the paraphrased sentences during test, using the well-trained extractors without any change. In the experiments, we leverage ChatGPT to determine virtual experts in the considered domains, and induce ChatGPT to generate paraphrases conditioned on the roles of virtual experts. We experiment on the benchmark SemEval datasets, including Laptop-domain L14 and Restaurant-domain R14-16. The experimental results show that our approach effectively recalls the inconspicuous aspect terms like {\textquotedblleft}al di la{\textquotedblright}, although it reduces the precision. In addition, it is proven that our approach can be substantially improved by redundancy elimination and multi-role voting. More importantly, our approach can be used to expand the predictions obtained on the original sentences. This yields state-of-the-art performance (i.e., F1-scores of 86.2{\%}, 89.3{\%}, 77.7{\%}, 82.7{\%} on L14 and R14-16) without retraining or fine-tuning the baseline extractors."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chen-etal-2023-smart">
<titleInfo>
<title>Smart “Chef”: Verifying the Effect of Role-based Paraphrasing for Aspect Term Extraction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jiaxiang</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yu</namePart>
<namePart type="family">Hong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qingting</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jianmin</namePart>
<namePart type="family">Yao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2023</title>
</titleInfo>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="family">Pino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We tackle Aspect Term Extraction (ATE), a task of automatically extracting aspect terms from sentences. The current Pretrained Language Model (PLM) based extractors have achieved significant improvements. They primarily benefit from context-aware encoding. However, a considerable number of sentences in ATE corpora contain uninformative or low-quality contexts. Such sentences frequently act as “troublemakers” during test. In this study, we explore the context-oriented quality improvement method. Specifically, we propose to automatically rewrite the sentences from the perspectives of virtual experts with different roles, such as a “chef” in the restaurant domain. On this basis, we perform ATE over the paraphrased sentences during test, using the well-trained extractors without any change. In the experiments, we leverage ChatGPT to determine virtual experts in the considered domains, and induce ChatGPT to generate paraphrases conditioned on the roles of virtual experts. We experiment on the benchmark SemEval datasets, including Laptop-domain L14 and Restaurant-domain R14-16. The experimental results show that our approach effectively recalls the inconspicuous aspect terms like “al di la”, although it reduces the precision. In addition, it is proven that our approach can be substantially improved by redundancy elimination and multi-role voting. More importantly, our approach can be used to expand the predictions obtained on the original sentences. This yields state-of-the-art performance (i.e., F1-scores of 86.2%, 89.3%, 77.7%, 82.7% on L14 and R14-16) without retraining or fine-tuning the baseline extractors.</abstract>
<identifier type="citekey">chen-etal-2023-smart</identifier>
<identifier type="doi">10.18653/v1/2023.findings-emnlp.144</identifier>
<location>
<url>https://aclanthology.org/2023.findings-emnlp.144/</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>2190</start>
<end>2197</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Smart “Chef”: Verifying the Effect of Role-based Paraphrasing for Aspect Term Extraction
%A Chen, Jiaxiang
%A Hong, Yu
%A Xu, Qingting
%A Yao, Jianmin
%Y Bouamor, Houda
%Y Pino, Juan
%Y Bali, Kalika
%S Findings of the Association for Computational Linguistics: EMNLP 2023
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F chen-etal-2023-smart
%X We tackle Aspect Term Extraction (ATE), a task of automatically extracting aspect terms from sentences. The current Pretrained Language Model (PLM) based extractors have achieved significant improvements. They primarily benefit from context-aware encoding. However, a considerable number of sentences in ATE corpora contain uninformative or low-quality contexts. Such sentences frequently act as “troublemakers” during test. In this study, we explore the context-oriented quality improvement method. Specifically, we propose to automatically rewrite the sentences from the perspectives of virtual experts with different roles, such as a “chef” in the restaurant domain. On this basis, we perform ATE over the paraphrased sentences during test, using the well-trained extractors without any change. In the experiments, we leverage ChatGPT to determine virtual experts in the considered domains, and induce ChatGPT to generate paraphrases conditioned on the roles of virtual experts. We experiment on the benchmark SemEval datasets, including Laptop-domain L14 and Restaurant-domain R14-16. The experimental results show that our approach effectively recalls the inconspicuous aspect terms like “al di la”, although it reduces the precision. In addition, it is proven that our approach can be substantially improved by redundancy elimination and multi-role voting. More importantly, our approach can be used to expand the predictions obtained on the original sentences. This yields state-of-the-art performance (i.e., F1-scores of 86.2%, 89.3%, 77.7%, 82.7% on L14 and R14-16) without retraining or fine-tuning the baseline extractors.
%R 10.18653/v1/2023.findings-emnlp.144
%U https://aclanthology.org/2023.findings-emnlp.144/
%U https://doi.org/10.18653/v1/2023.findings-emnlp.144
%P 2190-2197
Markdown (Informal)
[Smart “Chef”: Verifying the Effect of Role-based Paraphrasing for Aspect Term Extraction](https://aclanthology.org/2023.findings-emnlp.144/) (Chen et al., Findings 2023)
ACL