@inproceedings{wu-etal-2023-density,
title = "Density-Aware Prototypical Network for Few-Shot Relation Classification",
author = "Wu, Jianfeng and
Hu, Mengting and
Wu, Yike and
Wu, Bingzhe and
Xie, Yalan and
Liu, Mingming and
Cheng, Renhong",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2023",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.findings-emnlp.162/",
doi = "10.18653/v1/2023.findings-emnlp.162",
pages = "2477--2489",
abstract = "In recent years, few-shot relation classification has evoked many research interests. Yet a more challenging problem, i.e. none-of-the-above (NOTA), is under-explored. Existing works mainly regard NOTA as an extra class and treat it the same as known relations. However, such a solution ignores the overall instance distribution, where NOTA instances are actually outliers and distributed unnaturally compared with known ones. In this paper, we propose a density-aware prototypical network (D-Proto) to treat various instances distinctly. Specifically, we design unique training objectives to separate known instances and isolate NOTA instances, respectively. This produces an ideal instance distribution, where known instances are dense yet NOTAs have a small density. Moreover, we propose a NOTA detection module to further enlarge the density of known samples, and discriminate NOTA and known samples accurately. Experimental results demonstrate that the proposed method outperforms strong baselines with robustness towards various NOTA rates. The code will be made public after the paper is accepted."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wu-etal-2023-density">
<titleInfo>
<title>Density-Aware Prototypical Network for Few-Shot Relation Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jianfeng</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mengting</namePart>
<namePart type="family">Hu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yike</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bingzhe</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yalan</namePart>
<namePart type="family">Xie</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mingming</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Renhong</namePart>
<namePart type="family">Cheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2023</title>
</titleInfo>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="family">Pino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In recent years, few-shot relation classification has evoked many research interests. Yet a more challenging problem, i.e. none-of-the-above (NOTA), is under-explored. Existing works mainly regard NOTA as an extra class and treat it the same as known relations. However, such a solution ignores the overall instance distribution, where NOTA instances are actually outliers and distributed unnaturally compared with known ones. In this paper, we propose a density-aware prototypical network (D-Proto) to treat various instances distinctly. Specifically, we design unique training objectives to separate known instances and isolate NOTA instances, respectively. This produces an ideal instance distribution, where known instances are dense yet NOTAs have a small density. Moreover, we propose a NOTA detection module to further enlarge the density of known samples, and discriminate NOTA and known samples accurately. Experimental results demonstrate that the proposed method outperforms strong baselines with robustness towards various NOTA rates. The code will be made public after the paper is accepted.</abstract>
<identifier type="citekey">wu-etal-2023-density</identifier>
<identifier type="doi">10.18653/v1/2023.findings-emnlp.162</identifier>
<location>
<url>https://aclanthology.org/2023.findings-emnlp.162/</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>2477</start>
<end>2489</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Density-Aware Prototypical Network for Few-Shot Relation Classification
%A Wu, Jianfeng
%A Hu, Mengting
%A Wu, Yike
%A Wu, Bingzhe
%A Xie, Yalan
%A Liu, Mingming
%A Cheng, Renhong
%Y Bouamor, Houda
%Y Pino, Juan
%Y Bali, Kalika
%S Findings of the Association for Computational Linguistics: EMNLP 2023
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F wu-etal-2023-density
%X In recent years, few-shot relation classification has evoked many research interests. Yet a more challenging problem, i.e. none-of-the-above (NOTA), is under-explored. Existing works mainly regard NOTA as an extra class and treat it the same as known relations. However, such a solution ignores the overall instance distribution, where NOTA instances are actually outliers and distributed unnaturally compared with known ones. In this paper, we propose a density-aware prototypical network (D-Proto) to treat various instances distinctly. Specifically, we design unique training objectives to separate known instances and isolate NOTA instances, respectively. This produces an ideal instance distribution, where known instances are dense yet NOTAs have a small density. Moreover, we propose a NOTA detection module to further enlarge the density of known samples, and discriminate NOTA and known samples accurately. Experimental results demonstrate that the proposed method outperforms strong baselines with robustness towards various NOTA rates. The code will be made public after the paper is accepted.
%R 10.18653/v1/2023.findings-emnlp.162
%U https://aclanthology.org/2023.findings-emnlp.162/
%U https://doi.org/10.18653/v1/2023.findings-emnlp.162
%P 2477-2489
Markdown (Informal)
[Density-Aware Prototypical Network for Few-Shot Relation Classification](https://aclanthology.org/2023.findings-emnlp.162/) (Wu et al., Findings 2023)
ACL