@inproceedings{cheng-etal-2023-adaptive,
title = "Adaptive Textual Label Noise Learning based on Pre-trained Models",
author = "Cheng, Shaohuan and
Chen, Wenyu and
Mingsheng, Fu and
Xie, Xuanting and
Qu, Hong",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2023",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.findings-emnlp.209/",
doi = "10.18653/v1/2023.findings-emnlp.209",
pages = "3174--3188",
abstract = "The label noise in real-world scenarios is unpredictable and can even be a mixture of different types of noise. To meet this challenge, we develop an adaptive textual label noise learning framework based on pre-trained models, which consists of an adaptive warm-up stage and a hybrid training stage. Specifically, an early stopping method, relying solely on the training set, is designed to dynamically terminate the warm-up process based on the model`s fit level to different noise scenarios. The hybrid training stage incorporates several generalization strategies to gradually correct mislabeled instances, thereby making better use of noisy data. Experiments on multiple datasets demonstrate that our approach performs comparably or even surpasses the state-of-the-art methods in various noise scenarios, including scenarios with the mixture of multiple types of noise."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="cheng-etal-2023-adaptive">
<titleInfo>
<title>Adaptive Textual Label Noise Learning based on Pre-trained Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shaohuan</namePart>
<namePart type="family">Cheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wenyu</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fu</namePart>
<namePart type="family">Mingsheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuanting</namePart>
<namePart type="family">Xie</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hong</namePart>
<namePart type="family">Qu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2023</title>
</titleInfo>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="family">Pino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The label noise in real-world scenarios is unpredictable and can even be a mixture of different types of noise. To meet this challenge, we develop an adaptive textual label noise learning framework based on pre-trained models, which consists of an adaptive warm-up stage and a hybrid training stage. Specifically, an early stopping method, relying solely on the training set, is designed to dynamically terminate the warm-up process based on the model‘s fit level to different noise scenarios. The hybrid training stage incorporates several generalization strategies to gradually correct mislabeled instances, thereby making better use of noisy data. Experiments on multiple datasets demonstrate that our approach performs comparably or even surpasses the state-of-the-art methods in various noise scenarios, including scenarios with the mixture of multiple types of noise.</abstract>
<identifier type="citekey">cheng-etal-2023-adaptive</identifier>
<identifier type="doi">10.18653/v1/2023.findings-emnlp.209</identifier>
<location>
<url>https://aclanthology.org/2023.findings-emnlp.209/</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>3174</start>
<end>3188</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Adaptive Textual Label Noise Learning based on Pre-trained Models
%A Cheng, Shaohuan
%A Chen, Wenyu
%A Mingsheng, Fu
%A Xie, Xuanting
%A Qu, Hong
%Y Bouamor, Houda
%Y Pino, Juan
%Y Bali, Kalika
%S Findings of the Association for Computational Linguistics: EMNLP 2023
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F cheng-etal-2023-adaptive
%X The label noise in real-world scenarios is unpredictable and can even be a mixture of different types of noise. To meet this challenge, we develop an adaptive textual label noise learning framework based on pre-trained models, which consists of an adaptive warm-up stage and a hybrid training stage. Specifically, an early stopping method, relying solely on the training set, is designed to dynamically terminate the warm-up process based on the model‘s fit level to different noise scenarios. The hybrid training stage incorporates several generalization strategies to gradually correct mislabeled instances, thereby making better use of noisy data. Experiments on multiple datasets demonstrate that our approach performs comparably or even surpasses the state-of-the-art methods in various noise scenarios, including scenarios with the mixture of multiple types of noise.
%R 10.18653/v1/2023.findings-emnlp.209
%U https://aclanthology.org/2023.findings-emnlp.209/
%U https://doi.org/10.18653/v1/2023.findings-emnlp.209
%P 3174-3188
Markdown (Informal)
[Adaptive Textual Label Noise Learning based on Pre-trained Models](https://aclanthology.org/2023.findings-emnlp.209/) (Cheng et al., Findings 2023)
ACL