@inproceedings{wang-etal-2023-improving-neural,
title = "Improving Neural Machine Translation by Multi-Knowledge Integration with Prompting",
author = "Wang, Ke and
Xie, Jun and
Zhang, Yuqi and
Zhao, Yu",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2023",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.findings-emnlp.333/",
doi = "10.18653/v1/2023.findings-emnlp.333",
pages = "5000--5010",
abstract = "Improving neural machine translation (NMT) systems with prompting has achieved significant progress in recent years. In this work, we focus on how to integrate multi-knowledge, multiple types of knowledge, into NMT models to enhance the performance with prompting. We propose a unified framework, which can integrate effectively multiple types of knowledge including sentences, terminologies/phrases and translation templates into NMT models. We utilize multiple types of knowledge as prefix-prompts of input for the encoder and decoder of NMT models to guide the translation process. The approach requires no changes to the model architecture and effectively adapts to domain-specific translation without retraining. The experiments on English-Chinese and English-German translation demonstrate that our approach significantly outperform strong baselines, achieving high translation quality and terminology match accuracy."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-etal-2023-improving-neural">
<titleInfo>
<title>Improving Neural Machine Translation by Multi-Knowledge Integration with Prompting</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ke</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun</namePart>
<namePart type="family">Xie</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuqi</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yu</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2023</title>
</titleInfo>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="family">Pino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Improving neural machine translation (NMT) systems with prompting has achieved significant progress in recent years. In this work, we focus on how to integrate multi-knowledge, multiple types of knowledge, into NMT models to enhance the performance with prompting. We propose a unified framework, which can integrate effectively multiple types of knowledge including sentences, terminologies/phrases and translation templates into NMT models. We utilize multiple types of knowledge as prefix-prompts of input for the encoder and decoder of NMT models to guide the translation process. The approach requires no changes to the model architecture and effectively adapts to domain-specific translation without retraining. The experiments on English-Chinese and English-German translation demonstrate that our approach significantly outperform strong baselines, achieving high translation quality and terminology match accuracy.</abstract>
<identifier type="citekey">wang-etal-2023-improving-neural</identifier>
<identifier type="doi">10.18653/v1/2023.findings-emnlp.333</identifier>
<location>
<url>https://aclanthology.org/2023.findings-emnlp.333/</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>5000</start>
<end>5010</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Improving Neural Machine Translation by Multi-Knowledge Integration with Prompting
%A Wang, Ke
%A Xie, Jun
%A Zhang, Yuqi
%A Zhao, Yu
%Y Bouamor, Houda
%Y Pino, Juan
%Y Bali, Kalika
%S Findings of the Association for Computational Linguistics: EMNLP 2023
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F wang-etal-2023-improving-neural
%X Improving neural machine translation (NMT) systems with prompting has achieved significant progress in recent years. In this work, we focus on how to integrate multi-knowledge, multiple types of knowledge, into NMT models to enhance the performance with prompting. We propose a unified framework, which can integrate effectively multiple types of knowledge including sentences, terminologies/phrases and translation templates into NMT models. We utilize multiple types of knowledge as prefix-prompts of input for the encoder and decoder of NMT models to guide the translation process. The approach requires no changes to the model architecture and effectively adapts to domain-specific translation without retraining. The experiments on English-Chinese and English-German translation demonstrate that our approach significantly outperform strong baselines, achieving high translation quality and terminology match accuracy.
%R 10.18653/v1/2023.findings-emnlp.333
%U https://aclanthology.org/2023.findings-emnlp.333/
%U https://doi.org/10.18653/v1/2023.findings-emnlp.333
%P 5000-5010
Markdown (Informal)
[Improving Neural Machine Translation by Multi-Knowledge Integration with Prompting](https://aclanthology.org/2023.findings-emnlp.333/) (Wang et al., Findings 2023)
ACL