@inproceedings{shum-etal-2023-automatic,
title = "Automatic Prompt Augmentation and Selection with Chain-of-Thought from Labeled Data",
author = "Shum, Kashun and
Diao, Shizhe and
Zhang, Tong",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2023",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.findings-emnlp.811/",
doi = "10.18653/v1/2023.findings-emnlp.811",
pages = "12113--12139",
abstract = "Chain-of-thought (CoT) advances the reasoning abilities of large language models (LLMs) and achieves superior performance in complex reasoning tasks. However, most CoT studies rely on carefully designed human-annotated rational chains to prompt LLMs, posing challenges for real-world applications where labeled data is available without rational chains. This paper proposes a new strategy, AutomateCoT (Automatic Prompt Augmentation and Selection with Chain-of-Thought), that can bypass human engineering of CoT by automatically augmenting rational chains from a small labeled dataset, and then pruning low-quality chains to construct a candidate pool of machinegenerated rationale chains based on the labels. Finally, it selects the optimal combination of several rationale chains from the pool for CoT prompting by employing a variance-reduced policy gradient strategy to estimate the significance of each example. Automate-CoT enables a quick adaptation of the CoT technique to different tasks. Experimental results demonstrate the effectiveness of our method, where competitive results are achieved on arithmetic reasoning (+2.7{\%}), commonsense reasoning (+3.4{\%}), symbolic reasoning (+3.2{\%}), and non-reasoning tasks (+2.5{\%})."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="shum-etal-2023-automatic">
<titleInfo>
<title>Automatic Prompt Augmentation and Selection with Chain-of-Thought from Labeled Data</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kashun</namePart>
<namePart type="family">Shum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shizhe</namePart>
<namePart type="family">Diao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tong</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2023</title>
</titleInfo>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="family">Pino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Chain-of-thought (CoT) advances the reasoning abilities of large language models (LLMs) and achieves superior performance in complex reasoning tasks. However, most CoT studies rely on carefully designed human-annotated rational chains to prompt LLMs, posing challenges for real-world applications where labeled data is available without rational chains. This paper proposes a new strategy, AutomateCoT (Automatic Prompt Augmentation and Selection with Chain-of-Thought), that can bypass human engineering of CoT by automatically augmenting rational chains from a small labeled dataset, and then pruning low-quality chains to construct a candidate pool of machinegenerated rationale chains based on the labels. Finally, it selects the optimal combination of several rationale chains from the pool for CoT prompting by employing a variance-reduced policy gradient strategy to estimate the significance of each example. Automate-CoT enables a quick adaptation of the CoT technique to different tasks. Experimental results demonstrate the effectiveness of our method, where competitive results are achieved on arithmetic reasoning (+2.7%), commonsense reasoning (+3.4%), symbolic reasoning (+3.2%), and non-reasoning tasks (+2.5%).</abstract>
<identifier type="citekey">shum-etal-2023-automatic</identifier>
<identifier type="doi">10.18653/v1/2023.findings-emnlp.811</identifier>
<location>
<url>https://aclanthology.org/2023.findings-emnlp.811/</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>12113</start>
<end>12139</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Automatic Prompt Augmentation and Selection with Chain-of-Thought from Labeled Data
%A Shum, Kashun
%A Diao, Shizhe
%A Zhang, Tong
%Y Bouamor, Houda
%Y Pino, Juan
%Y Bali, Kalika
%S Findings of the Association for Computational Linguistics: EMNLP 2023
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F shum-etal-2023-automatic
%X Chain-of-thought (CoT) advances the reasoning abilities of large language models (LLMs) and achieves superior performance in complex reasoning tasks. However, most CoT studies rely on carefully designed human-annotated rational chains to prompt LLMs, posing challenges for real-world applications where labeled data is available without rational chains. This paper proposes a new strategy, AutomateCoT (Automatic Prompt Augmentation and Selection with Chain-of-Thought), that can bypass human engineering of CoT by automatically augmenting rational chains from a small labeled dataset, and then pruning low-quality chains to construct a candidate pool of machinegenerated rationale chains based on the labels. Finally, it selects the optimal combination of several rationale chains from the pool for CoT prompting by employing a variance-reduced policy gradient strategy to estimate the significance of each example. Automate-CoT enables a quick adaptation of the CoT technique to different tasks. Experimental results demonstrate the effectiveness of our method, where competitive results are achieved on arithmetic reasoning (+2.7%), commonsense reasoning (+3.4%), symbolic reasoning (+3.2%), and non-reasoning tasks (+2.5%).
%R 10.18653/v1/2023.findings-emnlp.811
%U https://aclanthology.org/2023.findings-emnlp.811/
%U https://doi.org/10.18653/v1/2023.findings-emnlp.811
%P 12113-12139
Markdown (Informal)
[Automatic Prompt Augmentation and Selection with Chain-of-Thought from Labeled Data](https://aclanthology.org/2023.findings-emnlp.811/) (Shum et al., Findings 2023)
ACL