@inproceedings{lin-etal-2023-improving,
title = "Improving Multi-Criteria {C}hinese Word Segmentation through Learning Sentence Representation",
author = "Lin, Chun and
Lin, Ying-Jia and
Yeh, Chia-Jen and
Li, Yi-Ting and
Yang, Ching-Wen and
Kao, Hung-Yu",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2023",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.findings-emnlp.850",
doi = "10.18653/v1/2023.findings-emnlp.850",
pages = "12756--12763",
abstract = "Recent Chinese word segmentation (CWS) models have shown competitive performance with pre-trained language models{'} knowledge. However, these models tend to learn the segmentation knowledge through in-vocabulary words rather than understanding the meaning of the entire context. To address this issue, we introduce a context-aware approach that incorporates unsupervised sentence representation learning over different dropout masks into the multi-criteria training framework. We demonstrate that our approach reaches state-of-the-art (SoTA) performance on F1 scores for six of the nine CWS benchmark datasets and out-of-vocabulary (OOV) recalls for eight of nine. Further experiments discover that substantial improvements can be brought with various sentence representation objectives.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lin-etal-2023-improving">
<titleInfo>
<title>Improving Multi-Criteria Chinese Word Segmentation through Learning Sentence Representation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chun</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ying-Jia</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chia-Jen</namePart>
<namePart type="family">Yeh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yi-Ting</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ching-Wen</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hung-Yu</namePart>
<namePart type="family">Kao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2023</title>
</titleInfo>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="family">Pino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Recent Chinese word segmentation (CWS) models have shown competitive performance with pre-trained language models’ knowledge. However, these models tend to learn the segmentation knowledge through in-vocabulary words rather than understanding the meaning of the entire context. To address this issue, we introduce a context-aware approach that incorporates unsupervised sentence representation learning over different dropout masks into the multi-criteria training framework. We demonstrate that our approach reaches state-of-the-art (SoTA) performance on F1 scores for six of the nine CWS benchmark datasets and out-of-vocabulary (OOV) recalls for eight of nine. Further experiments discover that substantial improvements can be brought with various sentence representation objectives.</abstract>
<identifier type="citekey">lin-etal-2023-improving</identifier>
<identifier type="doi">10.18653/v1/2023.findings-emnlp.850</identifier>
<location>
<url>https://aclanthology.org/2023.findings-emnlp.850</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>12756</start>
<end>12763</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Improving Multi-Criteria Chinese Word Segmentation through Learning Sentence Representation
%A Lin, Chun
%A Lin, Ying-Jia
%A Yeh, Chia-Jen
%A Li, Yi-Ting
%A Yang, Ching-Wen
%A Kao, Hung-Yu
%Y Bouamor, Houda
%Y Pino, Juan
%Y Bali, Kalika
%S Findings of the Association for Computational Linguistics: EMNLP 2023
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F lin-etal-2023-improving
%X Recent Chinese word segmentation (CWS) models have shown competitive performance with pre-trained language models’ knowledge. However, these models tend to learn the segmentation knowledge through in-vocabulary words rather than understanding the meaning of the entire context. To address this issue, we introduce a context-aware approach that incorporates unsupervised sentence representation learning over different dropout masks into the multi-criteria training framework. We demonstrate that our approach reaches state-of-the-art (SoTA) performance on F1 scores for six of the nine CWS benchmark datasets and out-of-vocabulary (OOV) recalls for eight of nine. Further experiments discover that substantial improvements can be brought with various sentence representation objectives.
%R 10.18653/v1/2023.findings-emnlp.850
%U https://aclanthology.org/2023.findings-emnlp.850
%U https://doi.org/10.18653/v1/2023.findings-emnlp.850
%P 12756-12763
Markdown (Informal)
[Improving Multi-Criteria Chinese Word Segmentation through Learning Sentence Representation](https://aclanthology.org/2023.findings-emnlp.850) (Lin et al., Findings 2023)
ACL