@inproceedings{gantt-etal-2023-event,
title = "On Event Individuation for Document-Level Information Extraction",
author = "Gantt, William and
Kriz, Reno and
Chen, Yunmo and
Vashishtha, Siddharth and
White, Aaron",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2023",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.findings-emnlp.862/",
doi = "10.18653/v1/2023.findings-emnlp.862",
pages = "12938--12958",
abstract = "As information extraction (IE) systems have grown more adept at processing whole documents, the classic task of *template filling* has seen renewed interest as a benchmark for document-level IE. In this position paper, we call into question the suitability of template filling for this purpose. We argue that the task demands definitive answers to thorny questions of *event individuation* {---} the problem of distinguishing distinct events {---} about which even human experts disagree. Through an annotation study and error analysis, we show that this raises concerns about the usefulness of template filling metrics, the quality of datasets for the task, and the ability of models to learn it. Finally, we consider possible solutions."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gantt-etal-2023-event">
<titleInfo>
<title>On Event Individuation for Document-Level Information Extraction</title>
</titleInfo>
<name type="personal">
<namePart type="given">William</namePart>
<namePart type="family">Gantt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Reno</namePart>
<namePart type="family">Kriz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yunmo</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Siddharth</namePart>
<namePart type="family">Vashishtha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aaron</namePart>
<namePart type="family">White</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2023</title>
</titleInfo>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="family">Pino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>As information extraction (IE) systems have grown more adept at processing whole documents, the classic task of *template filling* has seen renewed interest as a benchmark for document-level IE. In this position paper, we call into question the suitability of template filling for this purpose. We argue that the task demands definitive answers to thorny questions of *event individuation* — the problem of distinguishing distinct events — about which even human experts disagree. Through an annotation study and error analysis, we show that this raises concerns about the usefulness of template filling metrics, the quality of datasets for the task, and the ability of models to learn it. Finally, we consider possible solutions.</abstract>
<identifier type="citekey">gantt-etal-2023-event</identifier>
<identifier type="doi">10.18653/v1/2023.findings-emnlp.862</identifier>
<location>
<url>https://aclanthology.org/2023.findings-emnlp.862/</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>12938</start>
<end>12958</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T On Event Individuation for Document-Level Information Extraction
%A Gantt, William
%A Kriz, Reno
%A Chen, Yunmo
%A Vashishtha, Siddharth
%A White, Aaron
%Y Bouamor, Houda
%Y Pino, Juan
%Y Bali, Kalika
%S Findings of the Association for Computational Linguistics: EMNLP 2023
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F gantt-etal-2023-event
%X As information extraction (IE) systems have grown more adept at processing whole documents, the classic task of *template filling* has seen renewed interest as a benchmark for document-level IE. In this position paper, we call into question the suitability of template filling for this purpose. We argue that the task demands definitive answers to thorny questions of *event individuation* — the problem of distinguishing distinct events — about which even human experts disagree. Through an annotation study and error analysis, we show that this raises concerns about the usefulness of template filling metrics, the quality of datasets for the task, and the ability of models to learn it. Finally, we consider possible solutions.
%R 10.18653/v1/2023.findings-emnlp.862
%U https://aclanthology.org/2023.findings-emnlp.862/
%U https://doi.org/10.18653/v1/2023.findings-emnlp.862
%P 12938-12958
Markdown (Informal)
[On Event Individuation for Document-Level Information Extraction](https://aclanthology.org/2023.findings-emnlp.862/) (Gantt et al., Findings 2023)
ACL