@inproceedings{sun-etal-2023-noise,
title = "Noise-Robust Semi-Supervised Learning for Distantly Supervised Relation Extraction",
author = "Sun, Xin and
Liu, Qiang and
Wu, Shu and
Wang, Zilei and
Wang, Liang",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2023",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.findings-emnlp.876",
doi = "10.18653/v1/2023.findings-emnlp.876",
pages = "13145--13157",
abstract = "Distantly supervised relation extraction (DSRE) aims to extract relational facts from texts but suffers from noisy instances. To mitigate the influence of noisy labels, current methods typically use the Multi-Instance-Learning framework to extract relations for each bag. However, these approaches are not capable of extracting relation labels for individual sentences. Several studies have focused on sentence-level DSRE to solve the above problem. These studies primarily aim to develop methods for identifying noisy samples and filtering them out to mitigate the impact of noise. However, discarding noisy samples directly leads to the loss of useful information. To this end, we propose SSLRE, a novel Semi-Supervised-Learning Relation Extraction framework for sentence-level DSRE. We discard only the labels of the noisy samples and utilize these instances without labels as unlabeled samples. Our SSLRE framework utilizes a weighted K-NN graph to select confident samples as labeled data and the rest as unlabeled. We then design a robust semi-supervised learning framework that can efficiently handle remaining label noise present in the labeled dataset, while also making effective use of unlabeled samples. Based on our experiments on two real-world datasets, the SSLRE framework we proposed has achieved significant enhancements in sentence-level relation extraction performance compared to the existing state-of-the-art methods. Moreover, it has also attained a state-of-the-art level of performance in bag-level relation extraction with ONE aggregation strategy.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sun-etal-2023-noise">
<titleInfo>
<title>Noise-Robust Semi-Supervised Learning for Distantly Supervised Relation Extraction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xin</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qiang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shu</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zilei</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Liang</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2023</title>
</titleInfo>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="family">Pino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Distantly supervised relation extraction (DSRE) aims to extract relational facts from texts but suffers from noisy instances. To mitigate the influence of noisy labels, current methods typically use the Multi-Instance-Learning framework to extract relations for each bag. However, these approaches are not capable of extracting relation labels for individual sentences. Several studies have focused on sentence-level DSRE to solve the above problem. These studies primarily aim to develop methods for identifying noisy samples and filtering them out to mitigate the impact of noise. However, discarding noisy samples directly leads to the loss of useful information. To this end, we propose SSLRE, a novel Semi-Supervised-Learning Relation Extraction framework for sentence-level DSRE. We discard only the labels of the noisy samples and utilize these instances without labels as unlabeled samples. Our SSLRE framework utilizes a weighted K-NN graph to select confident samples as labeled data and the rest as unlabeled. We then design a robust semi-supervised learning framework that can efficiently handle remaining label noise present in the labeled dataset, while also making effective use of unlabeled samples. Based on our experiments on two real-world datasets, the SSLRE framework we proposed has achieved significant enhancements in sentence-level relation extraction performance compared to the existing state-of-the-art methods. Moreover, it has also attained a state-of-the-art level of performance in bag-level relation extraction with ONE aggregation strategy.</abstract>
<identifier type="citekey">sun-etal-2023-noise</identifier>
<identifier type="doi">10.18653/v1/2023.findings-emnlp.876</identifier>
<location>
<url>https://aclanthology.org/2023.findings-emnlp.876</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>13145</start>
<end>13157</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Noise-Robust Semi-Supervised Learning for Distantly Supervised Relation Extraction
%A Sun, Xin
%A Liu, Qiang
%A Wu, Shu
%A Wang, Zilei
%A Wang, Liang
%Y Bouamor, Houda
%Y Pino, Juan
%Y Bali, Kalika
%S Findings of the Association for Computational Linguistics: EMNLP 2023
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F sun-etal-2023-noise
%X Distantly supervised relation extraction (DSRE) aims to extract relational facts from texts but suffers from noisy instances. To mitigate the influence of noisy labels, current methods typically use the Multi-Instance-Learning framework to extract relations for each bag. However, these approaches are not capable of extracting relation labels for individual sentences. Several studies have focused on sentence-level DSRE to solve the above problem. These studies primarily aim to develop methods for identifying noisy samples and filtering them out to mitigate the impact of noise. However, discarding noisy samples directly leads to the loss of useful information. To this end, we propose SSLRE, a novel Semi-Supervised-Learning Relation Extraction framework for sentence-level DSRE. We discard only the labels of the noisy samples and utilize these instances without labels as unlabeled samples. Our SSLRE framework utilizes a weighted K-NN graph to select confident samples as labeled data and the rest as unlabeled. We then design a robust semi-supervised learning framework that can efficiently handle remaining label noise present in the labeled dataset, while also making effective use of unlabeled samples. Based on our experiments on two real-world datasets, the SSLRE framework we proposed has achieved significant enhancements in sentence-level relation extraction performance compared to the existing state-of-the-art methods. Moreover, it has also attained a state-of-the-art level of performance in bag-level relation extraction with ONE aggregation strategy.
%R 10.18653/v1/2023.findings-emnlp.876
%U https://aclanthology.org/2023.findings-emnlp.876
%U https://doi.org/10.18653/v1/2023.findings-emnlp.876
%P 13145-13157
Markdown (Informal)
[Noise-Robust Semi-Supervised Learning for Distantly Supervised Relation Extraction](https://aclanthology.org/2023.findings-emnlp.876) (Sun et al., Findings 2023)
ACL