@inproceedings{du-etal-2023-relation,
title = "Relation-Aware Question Answering for Heterogeneous Knowledge Graphs",
author = "Du, Haowei and
Huang, Quzhe and
Li, Chen and
Zhang, Chen and
Li, Yang and
Zhao, Dongyan",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2023",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.findings-emnlp.906/",
doi = "10.18653/v1/2023.findings-emnlp.906",
pages = "13582--13592",
abstract = "Multi-hop Knowledge Base Question Answering(KBQA) aims to find the answer entity in a knowledge graph (KG), which requires multiple steps of reasoning. Existing retrieval-based approaches solve this task by concentrating on the specific relation at different hops and predicting the intermediate entity within the reasoning path. However, these models fail to utilize information from head-tail entities and the semantic connection between relations to enhance the current relation representation, which undermines the information capturing of relations in KGs. To address this issue, we construct a \textbf{dual relation graph} where each node denotes a relation in the original KG (\textbf{primal entity graph}) and edges are constructed between relations sharing same head or tail entities. Then we iteratively do primal entity graph reasoning, dual relation graph information propagation, and interaction between these two graphs. In this way, the interaction between entity and relation is enhanced, and we derive better entity and relation representations. Experiments on two public datasets, WebQSP and CWQ, show that our approach achieves a significant performance gain over the prior state-of-the-art."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="du-etal-2023-relation">
<titleInfo>
<title>Relation-Aware Question Answering for Heterogeneous Knowledge Graphs</title>
</titleInfo>
<name type="personal">
<namePart type="given">Haowei</namePart>
<namePart type="family">Du</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Quzhe</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chen</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chen</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dongyan</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2023</title>
</titleInfo>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="family">Pino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Multi-hop Knowledge Base Question Answering(KBQA) aims to find the answer entity in a knowledge graph (KG), which requires multiple steps of reasoning. Existing retrieval-based approaches solve this task by concentrating on the specific relation at different hops and predicting the intermediate entity within the reasoning path. However, these models fail to utilize information from head-tail entities and the semantic connection between relations to enhance the current relation representation, which undermines the information capturing of relations in KGs. To address this issue, we construct a dual relation graph where each node denotes a relation in the original KG (primal entity graph) and edges are constructed between relations sharing same head or tail entities. Then we iteratively do primal entity graph reasoning, dual relation graph information propagation, and interaction between these two graphs. In this way, the interaction between entity and relation is enhanced, and we derive better entity and relation representations. Experiments on two public datasets, WebQSP and CWQ, show that our approach achieves a significant performance gain over the prior state-of-the-art.</abstract>
<identifier type="citekey">du-etal-2023-relation</identifier>
<identifier type="doi">10.18653/v1/2023.findings-emnlp.906</identifier>
<location>
<url>https://aclanthology.org/2023.findings-emnlp.906/</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>13582</start>
<end>13592</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Relation-Aware Question Answering for Heterogeneous Knowledge Graphs
%A Du, Haowei
%A Huang, Quzhe
%A Li, Chen
%A Zhang, Chen
%A Li, Yang
%A Zhao, Dongyan
%Y Bouamor, Houda
%Y Pino, Juan
%Y Bali, Kalika
%S Findings of the Association for Computational Linguistics: EMNLP 2023
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F du-etal-2023-relation
%X Multi-hop Knowledge Base Question Answering(KBQA) aims to find the answer entity in a knowledge graph (KG), which requires multiple steps of reasoning. Existing retrieval-based approaches solve this task by concentrating on the specific relation at different hops and predicting the intermediate entity within the reasoning path. However, these models fail to utilize information from head-tail entities and the semantic connection between relations to enhance the current relation representation, which undermines the information capturing of relations in KGs. To address this issue, we construct a dual relation graph where each node denotes a relation in the original KG (primal entity graph) and edges are constructed between relations sharing same head or tail entities. Then we iteratively do primal entity graph reasoning, dual relation graph information propagation, and interaction between these two graphs. In this way, the interaction between entity and relation is enhanced, and we derive better entity and relation representations. Experiments on two public datasets, WebQSP and CWQ, show that our approach achieves a significant performance gain over the prior state-of-the-art.
%R 10.18653/v1/2023.findings-emnlp.906
%U https://aclanthology.org/2023.findings-emnlp.906/
%U https://doi.org/10.18653/v1/2023.findings-emnlp.906
%P 13582-13592
Markdown (Informal)
[Relation-Aware Question Answering for Heterogeneous Knowledge Graphs](https://aclanthology.org/2023.findings-emnlp.906/) (Du et al., Findings 2023)
ACL