@inproceedings{maziarz-etal-2023-lexicalised,
title = "Lexicalised and non-lexicalized multi-word expressions in {W}ord{N}et: a cross-encoder approach",
author = "Maziarz, Marek and
Grabowski, {\L}ukasz and
Piotrowski, Tadeusz and
Rudnicka, Ewa and
Piasecki, Maciej",
editor = "Rigau, German and
Bond, Francis and
Rademaker, Alexandre",
booktitle = "Proceedings of the 12th Global Wordnet Conference",
month = jan,
year = "2023",
address = "University of the Basque Country, Donostia - San Sebastian, Basque Country",
publisher = "Global Wordnet Association",
url = "https://aclanthology.org/2023.gwc-1.28/",
pages = "228--234",
abstract = "Focusing on recognition of multi-word expressions (MWEs), we address the problem of recording MWEs in WordNet. In fact, not all MWEs recorded in that lexical database could with no doubt be considered as lexicalised (e.g. elements of wordnet taxonomy, quantifier phrases, certain collocations). In this paper, we use a cross-encoder approach to improve our earlier method of distinguishing between lexicalised and non-lexicalised MWEs found in WordNet using custom-designed rule-based and statistical approaches. We achieve F1-measure for the class of lexicalised word combinations close to 80{\%}, easily beating two baselines (random and a majority class one). Language model also proves to be better than a feature-based logistic regression model."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="maziarz-etal-2023-lexicalised">
<titleInfo>
<title>Lexicalised and non-lexicalized multi-word expressions in WordNet: a cross-encoder approach</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marek</namePart>
<namePart type="family">Maziarz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Łukasz</namePart>
<namePart type="family">Grabowski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tadeusz</namePart>
<namePart type="family">Piotrowski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ewa</namePart>
<namePart type="family">Rudnicka</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maciej</namePart>
<namePart type="family">Piasecki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th Global Wordnet Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">German</namePart>
<namePart type="family">Rigau</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Francis</namePart>
<namePart type="family">Bond</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexandre</namePart>
<namePart type="family">Rademaker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Global Wordnet Association</publisher>
<place>
<placeTerm type="text">University of the Basque Country, Donostia - San Sebastian, Basque Country</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Focusing on recognition of multi-word expressions (MWEs), we address the problem of recording MWEs in WordNet. In fact, not all MWEs recorded in that lexical database could with no doubt be considered as lexicalised (e.g. elements of wordnet taxonomy, quantifier phrases, certain collocations). In this paper, we use a cross-encoder approach to improve our earlier method of distinguishing between lexicalised and non-lexicalised MWEs found in WordNet using custom-designed rule-based and statistical approaches. We achieve F1-measure for the class of lexicalised word combinations close to 80%, easily beating two baselines (random and a majority class one). Language model also proves to be better than a feature-based logistic regression model.</abstract>
<identifier type="citekey">maziarz-etal-2023-lexicalised</identifier>
<location>
<url>https://aclanthology.org/2023.gwc-1.28/</url>
</location>
<part>
<date>2023-01</date>
<extent unit="page">
<start>228</start>
<end>234</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Lexicalised and non-lexicalized multi-word expressions in WordNet: a cross-encoder approach
%A Maziarz, Marek
%A Grabowski, Łukasz
%A Piotrowski, Tadeusz
%A Rudnicka, Ewa
%A Piasecki, Maciej
%Y Rigau, German
%Y Bond, Francis
%Y Rademaker, Alexandre
%S Proceedings of the 12th Global Wordnet Conference
%D 2023
%8 January
%I Global Wordnet Association
%C University of the Basque Country, Donostia - San Sebastian, Basque Country
%F maziarz-etal-2023-lexicalised
%X Focusing on recognition of multi-word expressions (MWEs), we address the problem of recording MWEs in WordNet. In fact, not all MWEs recorded in that lexical database could with no doubt be considered as lexicalised (e.g. elements of wordnet taxonomy, quantifier phrases, certain collocations). In this paper, we use a cross-encoder approach to improve our earlier method of distinguishing between lexicalised and non-lexicalised MWEs found in WordNet using custom-designed rule-based and statistical approaches. We achieve F1-measure for the class of lexicalised word combinations close to 80%, easily beating two baselines (random and a majority class one). Language model also proves to be better than a feature-based logistic regression model.
%U https://aclanthology.org/2023.gwc-1.28/
%P 228-234
Markdown (Informal)
[Lexicalised and non-lexicalized multi-word expressions in WordNet: a cross-encoder approach](https://aclanthology.org/2023.gwc-1.28/) (Maziarz et al., GWC 2023)
ACL