@inproceedings{wojtasik-etal-2023-wordnet,
title = "{W}ordnet for Definition Augmentation with Encoder-Decoder Architecture",
author = "Wojtasik, Konrad and
Janz, Arkadiusz and
Piasecki, Maciej",
editor = "Rigau, German and
Bond, Francis and
Rademaker, Alexandre",
booktitle = "Proceedings of the 12th Global Wordnet Conference",
month = jan,
year = "2023",
address = "University of the Basque Country, Donostia - San Sebastian, Basque Country",
publisher = "Global Wordnet Association",
url = "https://aclanthology.org/2023.gwc-1.6/",
pages = "50--59",
abstract = "Data augmentation is a difficult task in Natural Language Processing. Simple methods that can be relatively easily applied in other domains like insertion, deletion or substitution, mostly result in changing the sentence meaning significantly and obtaining an incorrect example. Wordnets are potentially a perfect source of rich and high quality data that when integrated with the powerful capacity of generative models can help to solve this complex task. In this work, we use plWordNet, which is a wordnet of the Polish language, to explore the capability of encoder-decoder architectures in data augmentation of sense glosses. We discuss the limitations of generative methods and perform qualitative review of generated data samples."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wojtasik-etal-2023-wordnet">
<titleInfo>
<title>Wordnet for Definition Augmentation with Encoder-Decoder Architecture</title>
</titleInfo>
<name type="personal">
<namePart type="given">Konrad</namePart>
<namePart type="family">Wojtasik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arkadiusz</namePart>
<namePart type="family">Janz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maciej</namePart>
<namePart type="family">Piasecki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th Global Wordnet Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">German</namePart>
<namePart type="family">Rigau</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Francis</namePart>
<namePart type="family">Bond</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexandre</namePart>
<namePart type="family">Rademaker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Global Wordnet Association</publisher>
<place>
<placeTerm type="text">University of the Basque Country, Donostia - San Sebastian, Basque Country</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Data augmentation is a difficult task in Natural Language Processing. Simple methods that can be relatively easily applied in other domains like insertion, deletion or substitution, mostly result in changing the sentence meaning significantly and obtaining an incorrect example. Wordnets are potentially a perfect source of rich and high quality data that when integrated with the powerful capacity of generative models can help to solve this complex task. In this work, we use plWordNet, which is a wordnet of the Polish language, to explore the capability of encoder-decoder architectures in data augmentation of sense glosses. We discuss the limitations of generative methods and perform qualitative review of generated data samples.</abstract>
<identifier type="citekey">wojtasik-etal-2023-wordnet</identifier>
<location>
<url>https://aclanthology.org/2023.gwc-1.6/</url>
</location>
<part>
<date>2023-01</date>
<extent unit="page">
<start>50</start>
<end>59</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Wordnet for Definition Augmentation with Encoder-Decoder Architecture
%A Wojtasik, Konrad
%A Janz, Arkadiusz
%A Piasecki, Maciej
%Y Rigau, German
%Y Bond, Francis
%Y Rademaker, Alexandre
%S Proceedings of the 12th Global Wordnet Conference
%D 2023
%8 January
%I Global Wordnet Association
%C University of the Basque Country, Donostia - San Sebastian, Basque Country
%F wojtasik-etal-2023-wordnet
%X Data augmentation is a difficult task in Natural Language Processing. Simple methods that can be relatively easily applied in other domains like insertion, deletion or substitution, mostly result in changing the sentence meaning significantly and obtaining an incorrect example. Wordnets are potentially a perfect source of rich and high quality data that when integrated with the powerful capacity of generative models can help to solve this complex task. In this work, we use plWordNet, which is a wordnet of the Polish language, to explore the capability of encoder-decoder architectures in data augmentation of sense glosses. We discuss the limitations of generative methods and perform qualitative review of generated data samples.
%U https://aclanthology.org/2023.gwc-1.6/
%P 50-59
Markdown (Informal)
[Wordnet for Definition Augmentation with Encoder-Decoder Architecture](https://aclanthology.org/2023.gwc-1.6/) (Wojtasik et al., GWC 2023)
ACL