@inproceedings{tanishq-etal-2023-blind,
title = "Blind Leading the Blind: A Social-Media Analysis of the Tech Industry",
author = "Chaudhary, Tanishq and
Malhotra, Pulak and
Mamidi, Radhika and
Kumaraguru, Ponnurangam",
editor = "D. Pawar, Jyoti and
Lalitha Devi, Sobha",
booktitle = "Proceedings of the 20th International Conference on Natural Language Processing (ICON)",
month = dec,
year = "2023",
address = "Goa University, Goa, India",
publisher = "NLP Association of India (NLPAI)",
url = "https://aclanthology.org/2023.icon-1.52/",
pages = "557--566",
abstract = "Online social networks (OSNs) have changed the way we perceive careers. A standard screening process for employees now involves profile checks on LinkedIn, X, and other platforms, with any negative opinions scrutinized. Blind, an anonymous social networking platform, aims to satisfy this growing need for taboo workplace discourse. In this paper, for the first time, we present a large-scale empirical text-based analysis of the Blind platform. We acquire and release two novel datasets: 63k Blind Company Reviews and 767k Blind Posts, containing over seven years of industry data. Using these, we analyze the Blind network, study drivers of engagement, and obtain insights into the last eventful years, preceding, during, and post-COVID-19, accounting for the modern phenomena of work-from-home, return-to-office, and the layoffs surrounding the crisis. Finally, we leverage the unique richness of the Blind content and propose a novel content classification pipeline to automatically retrieve and annotate relevant career and industry content across other platforms. We achieve an accuracy of 99.25{\%} for filtering out relevant content, 78.41{\%} for fine-grained annotation, and 98.29{\%} for opinion mining, demonstrating the high practicality of our software."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tanishq-etal-2023-blind">
<titleInfo>
<title>Blind Leading the Blind: A Social-Media Analysis of the Tech Industry</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tanishq</namePart>
<namePart type="family">Chaudhary</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pulak</namePart>
<namePart type="family">Malhotra</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Radhika</namePart>
<namePart type="family">Mamidi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ponnurangam</namePart>
<namePart type="family">Kumaraguru</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 20th International Conference on Natural Language Processing (ICON)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jyoti</namePart>
<namePart type="family">D. Pawar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sobha</namePart>
<namePart type="family">Lalitha Devi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>NLP Association of India (NLPAI)</publisher>
<place>
<placeTerm type="text">Goa University, Goa, India</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Online social networks (OSNs) have changed the way we perceive careers. A standard screening process for employees now involves profile checks on LinkedIn, X, and other platforms, with any negative opinions scrutinized. Blind, an anonymous social networking platform, aims to satisfy this growing need for taboo workplace discourse. In this paper, for the first time, we present a large-scale empirical text-based analysis of the Blind platform. We acquire and release two novel datasets: 63k Blind Company Reviews and 767k Blind Posts, containing over seven years of industry data. Using these, we analyze the Blind network, study drivers of engagement, and obtain insights into the last eventful years, preceding, during, and post-COVID-19, accounting for the modern phenomena of work-from-home, return-to-office, and the layoffs surrounding the crisis. Finally, we leverage the unique richness of the Blind content and propose a novel content classification pipeline to automatically retrieve and annotate relevant career and industry content across other platforms. We achieve an accuracy of 99.25% for filtering out relevant content, 78.41% for fine-grained annotation, and 98.29% for opinion mining, demonstrating the high practicality of our software.</abstract>
<identifier type="citekey">tanishq-etal-2023-blind</identifier>
<location>
<url>https://aclanthology.org/2023.icon-1.52/</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>557</start>
<end>566</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Blind Leading the Blind: A Social-Media Analysis of the Tech Industry
%A Chaudhary, Tanishq
%A Malhotra, Pulak
%A Mamidi, Radhika
%A Kumaraguru, Ponnurangam
%Y D. Pawar, Jyoti
%Y Lalitha Devi, Sobha
%S Proceedings of the 20th International Conference on Natural Language Processing (ICON)
%D 2023
%8 December
%I NLP Association of India (NLPAI)
%C Goa University, Goa, India
%F tanishq-etal-2023-blind
%X Online social networks (OSNs) have changed the way we perceive careers. A standard screening process for employees now involves profile checks on LinkedIn, X, and other platforms, with any negative opinions scrutinized. Blind, an anonymous social networking platform, aims to satisfy this growing need for taboo workplace discourse. In this paper, for the first time, we present a large-scale empirical text-based analysis of the Blind platform. We acquire and release two novel datasets: 63k Blind Company Reviews and 767k Blind Posts, containing over seven years of industry data. Using these, we analyze the Blind network, study drivers of engagement, and obtain insights into the last eventful years, preceding, during, and post-COVID-19, accounting for the modern phenomena of work-from-home, return-to-office, and the layoffs surrounding the crisis. Finally, we leverage the unique richness of the Blind content and propose a novel content classification pipeline to automatically retrieve and annotate relevant career and industry content across other platforms. We achieve an accuracy of 99.25% for filtering out relevant content, 78.41% for fine-grained annotation, and 98.29% for opinion mining, demonstrating the high practicality of our software.
%U https://aclanthology.org/2023.icon-1.52/
%P 557-566
Markdown (Informal)
[Blind Leading the Blind: A Social-Media Analysis of the Tech Industry](https://aclanthology.org/2023.icon-1.52/) (Chaudhary et al., ICON 2023)
ACL