@inproceedings{thomson-etal-2023-enhancing,
title = "Enhancing factualness and controllability of Data-to-Text Generation via data Views and constraints",
author = "Thomson, Craig and
Rebuffel, Clement and
Reiter, Ehud and
Soulier, Laure and
Sripada, Somayajulu and
Gallinari, Patrick",
editor = "Keet, C. Maria and
Lee, Hung-Yi and
Zarrie{\ss}, Sina",
booktitle = "Proceedings of the 16th International Natural Language Generation Conference",
month = sep,
year = "2023",
address = "Prague, Czechia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.inlg-main.16/",
doi = "10.18653/v1/2023.inlg-main.16",
pages = "221--236",
abstract = "Neural data-to-text systems lack the control and factual accuracy required to generate useful and insightful summaries of multidimensional data. We propose a solution in the form of data views, where each view describes an entity and its attributes along specific dimensions. A sequence of views can then be used as a high-level schema for document planning, with the neural model handling the complexities of micro-planning and surface realization. We show that our view-based system retains factual accuracy while offering high-level control of output that can be tailored based on user preference or other norms within the domain."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="thomson-etal-2023-enhancing">
<titleInfo>
<title>Enhancing factualness and controllability of Data-to-Text Generation via data Views and constraints</title>
</titleInfo>
<name type="personal">
<namePart type="given">Craig</namePart>
<namePart type="family">Thomson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Clement</namePart>
<namePart type="family">Rebuffel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ehud</namePart>
<namePart type="family">Reiter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Laure</namePart>
<namePart type="family">Soulier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Somayajulu</namePart>
<namePart type="family">Sripada</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Patrick</namePart>
<namePart type="family">Gallinari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 16th International Natural Language Generation Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">C</namePart>
<namePart type="given">Maria</namePart>
<namePart type="family">Keet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hung-Yi</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sina</namePart>
<namePart type="family">Zarrieß</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Prague, Czechia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Neural data-to-text systems lack the control and factual accuracy required to generate useful and insightful summaries of multidimensional data. We propose a solution in the form of data views, where each view describes an entity and its attributes along specific dimensions. A sequence of views can then be used as a high-level schema for document planning, with the neural model handling the complexities of micro-planning and surface realization. We show that our view-based system retains factual accuracy while offering high-level control of output that can be tailored based on user preference or other norms within the domain.</abstract>
<identifier type="citekey">thomson-etal-2023-enhancing</identifier>
<identifier type="doi">10.18653/v1/2023.inlg-main.16</identifier>
<location>
<url>https://aclanthology.org/2023.inlg-main.16/</url>
</location>
<part>
<date>2023-09</date>
<extent unit="page">
<start>221</start>
<end>236</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Enhancing factualness and controllability of Data-to-Text Generation via data Views and constraints
%A Thomson, Craig
%A Rebuffel, Clement
%A Reiter, Ehud
%A Soulier, Laure
%A Sripada, Somayajulu
%A Gallinari, Patrick
%Y Keet, C. Maria
%Y Lee, Hung-Yi
%Y Zarrieß, Sina
%S Proceedings of the 16th International Natural Language Generation Conference
%D 2023
%8 September
%I Association for Computational Linguistics
%C Prague, Czechia
%F thomson-etal-2023-enhancing
%X Neural data-to-text systems lack the control and factual accuracy required to generate useful and insightful summaries of multidimensional data. We propose a solution in the form of data views, where each view describes an entity and its attributes along specific dimensions. A sequence of views can then be used as a high-level schema for document planning, with the neural model handling the complexities of micro-planning and surface realization. We show that our view-based system retains factual accuracy while offering high-level control of output that can be tailored based on user preference or other norms within the domain.
%R 10.18653/v1/2023.inlg-main.16
%U https://aclanthology.org/2023.inlg-main.16/
%U https://doi.org/10.18653/v1/2023.inlg-main.16
%P 221-236
Markdown (Informal)
[Enhancing factualness and controllability of Data-to-Text Generation via data Views and constraints](https://aclanthology.org/2023.inlg-main.16/) (Thomson et al., INLG-SIGDIAL 2023)
ACL