@inproceedings{khosla-etal-2023-exploring,
title = "Exploring the Reasons for Non-generalizability of {KBQA} systems",
author = "Khosla, Sopan and
Dutt, Ritam and
Bannihatti Kumar, Vinayshekhar and
Gangadharaiah, Rashmi",
editor = "Tafreshi, Shabnam and
Akula, Arjun and
Sedoc, Jo{\~a}o and
Drozd, Aleksandr and
Rogers, Anna and
Rumshisky, Anna",
booktitle = "Proceedings of the Fourth Workshop on Insights from Negative Results in NLP",
month = may,
year = "2023",
address = "Dubrovnik, Croatia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.insights-1.11",
doi = "10.18653/v1/2023.insights-1.11",
pages = "88--93",
abstract = "Recent research has demonstrated impressive generalization capabilities of several Knowledge Base Question Answering (KBQA) models on the GrailQA dataset. We inspect whether these models can generalize to other datasets in a zero-shot setting. We notice a significant drop in performance and investigate the causes for the same. We observe that the models are dependent not only on the structural complexity of the questions, but also on the linguistic styles of framing a question. Specifically, the linguistic dimensions corresponding to explicitness, readability, coherence, and grammaticality have a significant impact on the performance of state-of-the-art KBQA models. Overall our results showcase the brittleness of such models and the need for creating generalizable systems.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="khosla-etal-2023-exploring">
<titleInfo>
<title>Exploring the Reasons for Non-generalizability of KBQA systems</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sopan</namePart>
<namePart type="family">Khosla</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ritam</namePart>
<namePart type="family">Dutt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vinayshekhar</namePart>
<namePart type="family">Bannihatti Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rashmi</namePart>
<namePart type="family">Gangadharaiah</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourth Workshop on Insights from Negative Results in NLP</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shabnam</namePart>
<namePart type="family">Tafreshi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arjun</namePart>
<namePart type="family">Akula</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">João</namePart>
<namePart type="family">Sedoc</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aleksandr</namePart>
<namePart type="family">Drozd</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rumshisky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dubrovnik, Croatia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Recent research has demonstrated impressive generalization capabilities of several Knowledge Base Question Answering (KBQA) models on the GrailQA dataset. We inspect whether these models can generalize to other datasets in a zero-shot setting. We notice a significant drop in performance and investigate the causes for the same. We observe that the models are dependent not only on the structural complexity of the questions, but also on the linguistic styles of framing a question. Specifically, the linguistic dimensions corresponding to explicitness, readability, coherence, and grammaticality have a significant impact on the performance of state-of-the-art KBQA models. Overall our results showcase the brittleness of such models and the need for creating generalizable systems.</abstract>
<identifier type="citekey">khosla-etal-2023-exploring</identifier>
<identifier type="doi">10.18653/v1/2023.insights-1.11</identifier>
<location>
<url>https://aclanthology.org/2023.insights-1.11</url>
</location>
<part>
<date>2023-05</date>
<extent unit="page">
<start>88</start>
<end>93</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Exploring the Reasons for Non-generalizability of KBQA systems
%A Khosla, Sopan
%A Dutt, Ritam
%A Bannihatti Kumar, Vinayshekhar
%A Gangadharaiah, Rashmi
%Y Tafreshi, Shabnam
%Y Akula, Arjun
%Y Sedoc, João
%Y Drozd, Aleksandr
%Y Rogers, Anna
%Y Rumshisky, Anna
%S Proceedings of the Fourth Workshop on Insights from Negative Results in NLP
%D 2023
%8 May
%I Association for Computational Linguistics
%C Dubrovnik, Croatia
%F khosla-etal-2023-exploring
%X Recent research has demonstrated impressive generalization capabilities of several Knowledge Base Question Answering (KBQA) models on the GrailQA dataset. We inspect whether these models can generalize to other datasets in a zero-shot setting. We notice a significant drop in performance and investigate the causes for the same. We observe that the models are dependent not only on the structural complexity of the questions, but also on the linguistic styles of framing a question. Specifically, the linguistic dimensions corresponding to explicitness, readability, coherence, and grammaticality have a significant impact on the performance of state-of-the-art KBQA models. Overall our results showcase the brittleness of such models and the need for creating generalizable systems.
%R 10.18653/v1/2023.insights-1.11
%U https://aclanthology.org/2023.insights-1.11
%U https://doi.org/10.18653/v1/2023.insights-1.11
%P 88-93
Markdown (Informal)
[Exploring the Reasons for Non-generalizability of KBQA systems](https://aclanthology.org/2023.insights-1.11) (Khosla et al., insights-WS 2023)
ACL