@inproceedings{behzad-etal-2023-effect,
title = "The Effect of Alignment Correction on Cross-Lingual Annotation Projection",
author = "Behzad, Shabnam and
Ebner, Seth and
Marone, Marc and
Van Durme, Benjamin and
Yarmohammadi, Mahsa",
editor = "Prange, Jakob and
Friedrich, Annemarie",
booktitle = "Proceedings of the 17th Linguistic Annotation Workshop (LAW-XVII)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.law-1.24",
doi = "10.18653/v1/2023.law-1.24",
pages = "244--251",
abstract = "Cross-lingual annotation projection is a practical method for improving performance on low resource structured prediction tasks. An important step in annotation projection is obtaining alignments between the source and target texts, which enables the mapping of annotations across the texts. By manually correcting automatically generated alignments, we examine the impact of alignment quality{---}automatic, manual, and mixed{---}on downstream performance for two information extraction tasks and quantify the trade-off between annotation effort and model performance.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="behzad-etal-2023-effect">
<titleInfo>
<title>The Effect of Alignment Correction on Cross-Lingual Annotation Projection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shabnam</namePart>
<namePart type="family">Behzad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seth</namePart>
<namePart type="family">Ebner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marc</namePart>
<namePart type="family">Marone</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Benjamin</namePart>
<namePart type="family">Van Durme</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mahsa</namePart>
<namePart type="family">Yarmohammadi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 17th Linguistic Annotation Workshop (LAW-XVII)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jakob</namePart>
<namePart type="family">Prange</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Annemarie</namePart>
<namePart type="family">Friedrich</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Cross-lingual annotation projection is a practical method for improving performance on low resource structured prediction tasks. An important step in annotation projection is obtaining alignments between the source and target texts, which enables the mapping of annotations across the texts. By manually correcting automatically generated alignments, we examine the impact of alignment quality—automatic, manual, and mixed—on downstream performance for two information extraction tasks and quantify the trade-off between annotation effort and model performance.</abstract>
<identifier type="citekey">behzad-etal-2023-effect</identifier>
<identifier type="doi">10.18653/v1/2023.law-1.24</identifier>
<location>
<url>https://aclanthology.org/2023.law-1.24</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>244</start>
<end>251</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T The Effect of Alignment Correction on Cross-Lingual Annotation Projection
%A Behzad, Shabnam
%A Ebner, Seth
%A Marone, Marc
%A Van Durme, Benjamin
%A Yarmohammadi, Mahsa
%Y Prange, Jakob
%Y Friedrich, Annemarie
%S Proceedings of the 17th Linguistic Annotation Workshop (LAW-XVII)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F behzad-etal-2023-effect
%X Cross-lingual annotation projection is a practical method for improving performance on low resource structured prediction tasks. An important step in annotation projection is obtaining alignments between the source and target texts, which enables the mapping of annotations across the texts. By manually correcting automatically generated alignments, we examine the impact of alignment quality—automatic, manual, and mixed—on downstream performance for two information extraction tasks and quantify the trade-off between annotation effort and model performance.
%R 10.18653/v1/2023.law-1.24
%U https://aclanthology.org/2023.law-1.24
%U https://doi.org/10.18653/v1/2023.law-1.24
%P 244-251
Markdown (Informal)
[The Effect of Alignment Correction on Cross-Lingual Annotation Projection](https://aclanthology.org/2023.law-1.24) (Behzad et al., LAW 2023)
ACL