@inproceedings{caporusso-etal-2023-ijs,
title = "{IJS}@{LT}-{EDI} : Ensemble Approaches to Detect Signs of Depression from Social Media Text",
author = "Caporusso, Jaya and
Tran, Thi Hong Hanh and
Pollak, Senja",
editor = "Chakravarthi, Bharathi R. and
Bharathi, B. and
Griffith, Joephine and
Bali, Kalika and
Buitelaar, Paul",
booktitle = "Proceedings of the Third Workshop on Language Technology for Equality, Diversity and Inclusion",
month = sep,
year = "2023",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd., Shoumen, Bulgaria",
url = "https://aclanthology.org/2023.ltedi-1.26/",
pages = "172--178",
abstract = "This paper presents our ensembling solutions for detecting signs of depression in social media text, as part of the Shared Task at LT-EDI@RANLP 2023. By leveraging social media posts in English, the task involves the development of a system to accurately classify them as presenting signs of depression of one of three levels: {\textquotedblleft}severe{\textquotedblright}, {\textquotedblleft}moderate{\textquotedblright}, and {\textquotedblleft}not depressed{\textquotedblright}. We verify the hypothesis that combining contextual information from a language model with local domain-specific features can improve the classifier`s performance. We do so by evaluating: (1) two global classifiers (support vector machine and logistic regression); (2) contextual information from language models; and (3) the ensembling results."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="caporusso-etal-2023-ijs">
<titleInfo>
<title>IJS@LT-EDI : Ensemble Approaches to Detect Signs of Depression from Social Media Text</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jaya</namePart>
<namePart type="family">Caporusso</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thi</namePart>
<namePart type="given">Hong</namePart>
<namePart type="given">Hanh</namePart>
<namePart type="family">Tran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Senja</namePart>
<namePart type="family">Pollak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Third Workshop on Language Technology for Equality, Diversity and Inclusion</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bharathi</namePart>
<namePart type="given">R</namePart>
<namePart type="family">Chakravarthi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">B</namePart>
<namePart type="family">Bharathi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joephine</namePart>
<namePart type="family">Griffith</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paul</namePart>
<namePart type="family">Buitelaar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd., Shoumen, Bulgaria</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents our ensembling solutions for detecting signs of depression in social media text, as part of the Shared Task at LT-EDI@RANLP 2023. By leveraging social media posts in English, the task involves the development of a system to accurately classify them as presenting signs of depression of one of three levels: “severe”, “moderate”, and “not depressed”. We verify the hypothesis that combining contextual information from a language model with local domain-specific features can improve the classifier‘s performance. We do so by evaluating: (1) two global classifiers (support vector machine and logistic regression); (2) contextual information from language models; and (3) the ensembling results.</abstract>
<identifier type="citekey">caporusso-etal-2023-ijs</identifier>
<location>
<url>https://aclanthology.org/2023.ltedi-1.26/</url>
</location>
<part>
<date>2023-09</date>
<extent unit="page">
<start>172</start>
<end>178</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T IJS@LT-EDI : Ensemble Approaches to Detect Signs of Depression from Social Media Text
%A Caporusso, Jaya
%A Tran, Thi Hong Hanh
%A Pollak, Senja
%Y Chakravarthi, Bharathi R.
%Y Bharathi, B.
%Y Griffith, Joephine
%Y Bali, Kalika
%Y Buitelaar, Paul
%S Proceedings of the Third Workshop on Language Technology for Equality, Diversity and Inclusion
%D 2023
%8 September
%I INCOMA Ltd., Shoumen, Bulgaria
%C Varna, Bulgaria
%F caporusso-etal-2023-ijs
%X This paper presents our ensembling solutions for detecting signs of depression in social media text, as part of the Shared Task at LT-EDI@RANLP 2023. By leveraging social media posts in English, the task involves the development of a system to accurately classify them as presenting signs of depression of one of three levels: “severe”, “moderate”, and “not depressed”. We verify the hypothesis that combining contextual information from a language model with local domain-specific features can improve the classifier‘s performance. We do so by evaluating: (1) two global classifiers (support vector machine and logistic regression); (2) contextual information from language models; and (3) the ensembling results.
%U https://aclanthology.org/2023.ltedi-1.26/
%P 172-178
Markdown (Informal)
[IJS@LT-EDI : Ensemble Approaches to Detect Signs of Depression from Social Media Text](https://aclanthology.org/2023.ltedi-1.26/) (Caporusso et al., LTEDI 2023)
ACL