@inproceedings{l-etal-2023-interns,
title = "Interns@{LT}-{EDI} : Detecting Signs of Depression from Social Media Text",
author = "L, Koushik and
L, Hariharan R. and
M, Anand Kumar",
editor = "Chakravarthi, Bharathi R. and
Bharathi, B. and
Griffith, Joephine and
Bali, Kalika and
Buitelaar, Paul",
booktitle = "Proceedings of the Third Workshop on Language Technology for Equality, Diversity and Inclusion",
month = sep,
year = "2023",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd., Shoumen, Bulgaria",
url = "https://aclanthology.org/2023.ltedi-1.40/",
pages = "262--265",
abstract = "This submission presents our approach for depression detection in social media text. The methodology includes data collection, preprocessing - SMOTE, feature extraction/selection - TF-IDF and Glove, model development- SVM, CNN and Bi-LSTM, training, evaluation, optimisation, and validation. The proposed methodology aims to contribute to the accurate detection of depression."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="l-etal-2023-interns">
<titleInfo>
<title>Interns@LT-EDI : Detecting Signs of Depression from Social Media Text</title>
</titleInfo>
<name type="personal">
<namePart type="given">Koushik</namePart>
<namePart type="family">L</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hariharan</namePart>
<namePart type="given">R</namePart>
<namePart type="family">L</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anand</namePart>
<namePart type="given">Kumar</namePart>
<namePart type="family">M</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Third Workshop on Language Technology for Equality, Diversity and Inclusion</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bharathi</namePart>
<namePart type="given">R</namePart>
<namePart type="family">Chakravarthi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">B</namePart>
<namePart type="family">Bharathi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joephine</namePart>
<namePart type="family">Griffith</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paul</namePart>
<namePart type="family">Buitelaar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd., Shoumen, Bulgaria</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This submission presents our approach for depression detection in social media text. The methodology includes data collection, preprocessing - SMOTE, feature extraction/selection - TF-IDF and Glove, model development- SVM, CNN and Bi-LSTM, training, evaluation, optimisation, and validation. The proposed methodology aims to contribute to the accurate detection of depression.</abstract>
<identifier type="citekey">l-etal-2023-interns</identifier>
<location>
<url>https://aclanthology.org/2023.ltedi-1.40/</url>
</location>
<part>
<date>2023-09</date>
<extent unit="page">
<start>262</start>
<end>265</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Interns@LT-EDI : Detecting Signs of Depression from Social Media Text
%A L, Koushik
%A L, Hariharan R.
%A M, Anand Kumar
%Y Chakravarthi, Bharathi R.
%Y Bharathi, B.
%Y Griffith, Joephine
%Y Bali, Kalika
%Y Buitelaar, Paul
%S Proceedings of the Third Workshop on Language Technology for Equality, Diversity and Inclusion
%D 2023
%8 September
%I INCOMA Ltd., Shoumen, Bulgaria
%C Varna, Bulgaria
%F l-etal-2023-interns
%X This submission presents our approach for depression detection in social media text. The methodology includes data collection, preprocessing - SMOTE, feature extraction/selection - TF-IDF and Glove, model development- SVM, CNN and Bi-LSTM, training, evaluation, optimisation, and validation. The proposed methodology aims to contribute to the accurate detection of depression.
%U https://aclanthology.org/2023.ltedi-1.40/
%P 262-265
Markdown (Informal)
[Interns@LT-EDI : Detecting Signs of Depression from Social Media Text](https://aclanthology.org/2023.ltedi-1.40/) (L et al., LTEDI 2023)
ACL