@inproceedings{hegde-etal-2023-mucs-lt,
title = "{MUCS}@{LT}-{EDI}2023: Learning Approaches for Hope Speech Detection in Social Media Text",
author = "Hegde, Asha and
G, Kavya and
Coelho, Sharal and
Shashirekha, Hosahalli Lakshmaiah",
editor = "Chakravarthi, Bharathi R. and
Bharathi, B. and
Griffith, Joephine and
Bali, Kalika and
Buitelaar, Paul",
booktitle = "Proceedings of the Third Workshop on Language Technology for Equality, Diversity and Inclusion",
month = sep,
year = "2023",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd., Shoumen, Bulgaria",
url = "https://aclanthology.org/2023.ltedi-1.43/",
pages = "279--286",
abstract = "Hope plays a significant role in shaping human thoughts and actions and hope content has received limited attention in the realm of social media data analysis. The exploration of hope content helps to uncover the valuable insights into users' aspirations, expectations, and emotional states. By delving into the analysis of hope content on social media platforms, researchers and analysts can gain a deeper understanding of how hope influences individuals' behaviors, decisions, and overall well-being in the digital age. However, this area is rarely explored even for resource-high languages. To address the identification of hope text in social media platforms, this paper describes the models submitted by the team MUCS to {\textquotedblleft}Hope Speech Detection for Equality, Diversity, and Inclusion (LT-EDI){\textquotedblright} shared task organized at Recent Advances in Natural Language Processing (RANLP) - 2023. This shared task aims to classify a comment/post in English and code-mixed texts in three languages, namely, Bulgarian, Spanish, and Hindi into one of the two predefined categories, namely, {\textquotedblleft}Hope speech{\textquotedblright} and {\textquotedblleft}Non Hope speech{\textquotedblright}. Two models, namely: i) Hope{\_}BERT - Linear Support Vector Classifier (LinearSVC) model trained by combining Bidirectional Encoder Representations from Transformers (BERT) embeddings and Term Frequency-Inverse Document Frequency (TF-IDF) of character n-grams with word boundary (char{\_}wb) for English and ii) Hope{\_}mBERT - LinearSVC model trained by combining Multilingual BERT (mBERT) embeddings and TF-IDF of char{\_}wb for Bulgarian, Spanish, and Hindi code-mixed texts are proposed for the shared task to classify the given text into Hope or Non-Hope categories. The proposed models obtained 1st, 1st, 2nd, and 5th ranks for Spanish, Bulgarian, Hindi, and English texts respectively."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hegde-etal-2023-mucs-lt">
<titleInfo>
<title>MUCS@LT-EDI2023: Learning Approaches for Hope Speech Detection in Social Media Text</title>
</titleInfo>
<name type="personal">
<namePart type="given">Asha</namePart>
<namePart type="family">Hegde</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kavya</namePart>
<namePart type="family">G</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sharal</namePart>
<namePart type="family">Coelho</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hosahalli</namePart>
<namePart type="given">Lakshmaiah</namePart>
<namePart type="family">Shashirekha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Third Workshop on Language Technology for Equality, Diversity and Inclusion</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bharathi</namePart>
<namePart type="given">R</namePart>
<namePart type="family">Chakravarthi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">B</namePart>
<namePart type="family">Bharathi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joephine</namePart>
<namePart type="family">Griffith</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paul</namePart>
<namePart type="family">Buitelaar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd., Shoumen, Bulgaria</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Hope plays a significant role in shaping human thoughts and actions and hope content has received limited attention in the realm of social media data analysis. The exploration of hope content helps to uncover the valuable insights into users’ aspirations, expectations, and emotional states. By delving into the analysis of hope content on social media platforms, researchers and analysts can gain a deeper understanding of how hope influences individuals’ behaviors, decisions, and overall well-being in the digital age. However, this area is rarely explored even for resource-high languages. To address the identification of hope text in social media platforms, this paper describes the models submitted by the team MUCS to “Hope Speech Detection for Equality, Diversity, and Inclusion (LT-EDI)” shared task organized at Recent Advances in Natural Language Processing (RANLP) - 2023. This shared task aims to classify a comment/post in English and code-mixed texts in three languages, namely, Bulgarian, Spanish, and Hindi into one of the two predefined categories, namely, “Hope speech” and “Non Hope speech”. Two models, namely: i) Hope_BERT - Linear Support Vector Classifier (LinearSVC) model trained by combining Bidirectional Encoder Representations from Transformers (BERT) embeddings and Term Frequency-Inverse Document Frequency (TF-IDF) of character n-grams with word boundary (char_wb) for English and ii) Hope_mBERT - LinearSVC model trained by combining Multilingual BERT (mBERT) embeddings and TF-IDF of char_wb for Bulgarian, Spanish, and Hindi code-mixed texts are proposed for the shared task to classify the given text into Hope or Non-Hope categories. The proposed models obtained 1st, 1st, 2nd, and 5th ranks for Spanish, Bulgarian, Hindi, and English texts respectively.</abstract>
<identifier type="citekey">hegde-etal-2023-mucs-lt</identifier>
<location>
<url>https://aclanthology.org/2023.ltedi-1.43/</url>
</location>
<part>
<date>2023-09</date>
<extent unit="page">
<start>279</start>
<end>286</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T MUCS@LT-EDI2023: Learning Approaches for Hope Speech Detection in Social Media Text
%A Hegde, Asha
%A G, Kavya
%A Coelho, Sharal
%A Shashirekha, Hosahalli Lakshmaiah
%Y Chakravarthi, Bharathi R.
%Y Bharathi, B.
%Y Griffith, Joephine
%Y Bali, Kalika
%Y Buitelaar, Paul
%S Proceedings of the Third Workshop on Language Technology for Equality, Diversity and Inclusion
%D 2023
%8 September
%I INCOMA Ltd., Shoumen, Bulgaria
%C Varna, Bulgaria
%F hegde-etal-2023-mucs-lt
%X Hope plays a significant role in shaping human thoughts and actions and hope content has received limited attention in the realm of social media data analysis. The exploration of hope content helps to uncover the valuable insights into users’ aspirations, expectations, and emotional states. By delving into the analysis of hope content on social media platforms, researchers and analysts can gain a deeper understanding of how hope influences individuals’ behaviors, decisions, and overall well-being in the digital age. However, this area is rarely explored even for resource-high languages. To address the identification of hope text in social media platforms, this paper describes the models submitted by the team MUCS to “Hope Speech Detection for Equality, Diversity, and Inclusion (LT-EDI)” shared task organized at Recent Advances in Natural Language Processing (RANLP) - 2023. This shared task aims to classify a comment/post in English and code-mixed texts in three languages, namely, Bulgarian, Spanish, and Hindi into one of the two predefined categories, namely, “Hope speech” and “Non Hope speech”. Two models, namely: i) Hope_BERT - Linear Support Vector Classifier (LinearSVC) model trained by combining Bidirectional Encoder Representations from Transformers (BERT) embeddings and Term Frequency-Inverse Document Frequency (TF-IDF) of character n-grams with word boundary (char_wb) for English and ii) Hope_mBERT - LinearSVC model trained by combining Multilingual BERT (mBERT) embeddings and TF-IDF of char_wb for Bulgarian, Spanish, and Hindi code-mixed texts are proposed for the shared task to classify the given text into Hope or Non-Hope categories. The proposed models obtained 1st, 1st, 2nd, and 5th ranks for Spanish, Bulgarian, Hindi, and English texts respectively.
%U https://aclanthology.org/2023.ltedi-1.43/
%P 279-286
Markdown (Informal)
[MUCS@LT-EDI2023: Learning Approaches for Hope Speech Detection in Social Media Text](https://aclanthology.org/2023.ltedi-1.43/) (Hegde et al., LTEDI 2023)
ACL