@inproceedings{bizzoni-feldkamp-2023-comparing,
title = "Comparing Transformer and Dictionary-based Sentiment Models for Literary Texts: Hemingway as a Case-study",
author = "Bizzoni, Yuri and
Feldkamp, Pascale",
editor = {H{\"a}m{\"a}l{\"a}inen, Mika and
{\"O}hman, Emily and
Pirinen, Flammie and
Alnajjar, Khalid and
Miyagawa, So and
Bizzoni, Yuri and
Partanen, Niko and
Rueter, Jack},
booktitle = "Proceedings of the Joint 3rd International Conference on Natural Language Processing for Digital Humanities and 8th International Workshop on Computational Linguistics for Uralic Languages",
month = dec,
year = "2023",
address = "Tokyo, Japan",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.nlp4dh-1.25/",
pages = "219--228",
abstract = "The literary domain continues to pose a challenge for Sentiment Analysis methods, due to its particularly nuanced and layered nature. This paper explores the adequacy of different Sentiment Analysis tools - from dictionary-based approaches to state-of-the-art Transformers - for capturing valence and modelling sentiment arcs. We take Ernest Hemingway`s novel The Old Man and the Sea as a case study to address challenges inherent to literary language, compare Transformer and rule-based systems' scores with human annotations, and shed light on the complexities of analyzing sentiment in narrative texts. Finally, we emphasize the potential of model ensembles."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bizzoni-feldkamp-2023-comparing">
<titleInfo>
<title>Comparing Transformer and Dictionary-based Sentiment Models for Literary Texts: Hemingway as a Case-study</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuri</namePart>
<namePart type="family">Bizzoni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pascale</namePart>
<namePart type="family">Feldkamp</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Joint 3rd International Conference on Natural Language Processing for Digital Humanities and 8th International Workshop on Computational Linguistics for Uralic Languages</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mika</namePart>
<namePart type="family">Hämäläinen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="family">Öhman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Flammie</namePart>
<namePart type="family">Pirinen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Alnajjar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">So</namePart>
<namePart type="family">Miyagawa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuri</namePart>
<namePart type="family">Bizzoni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Niko</namePart>
<namePart type="family">Partanen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jack</namePart>
<namePart type="family">Rueter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Tokyo, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The literary domain continues to pose a challenge for Sentiment Analysis methods, due to its particularly nuanced and layered nature. This paper explores the adequacy of different Sentiment Analysis tools - from dictionary-based approaches to state-of-the-art Transformers - for capturing valence and modelling sentiment arcs. We take Ernest Hemingway‘s novel The Old Man and the Sea as a case study to address challenges inherent to literary language, compare Transformer and rule-based systems’ scores with human annotations, and shed light on the complexities of analyzing sentiment in narrative texts. Finally, we emphasize the potential of model ensembles.</abstract>
<identifier type="citekey">bizzoni-feldkamp-2023-comparing</identifier>
<location>
<url>https://aclanthology.org/2023.nlp4dh-1.25/</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>219</start>
<end>228</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Comparing Transformer and Dictionary-based Sentiment Models for Literary Texts: Hemingway as a Case-study
%A Bizzoni, Yuri
%A Feldkamp, Pascale
%Y Hämäläinen, Mika
%Y Öhman, Emily
%Y Pirinen, Flammie
%Y Alnajjar, Khalid
%Y Miyagawa, So
%Y Bizzoni, Yuri
%Y Partanen, Niko
%Y Rueter, Jack
%S Proceedings of the Joint 3rd International Conference on Natural Language Processing for Digital Humanities and 8th International Workshop on Computational Linguistics for Uralic Languages
%D 2023
%8 December
%I Association for Computational Linguistics
%C Tokyo, Japan
%F bizzoni-feldkamp-2023-comparing
%X The literary domain continues to pose a challenge for Sentiment Analysis methods, due to its particularly nuanced and layered nature. This paper explores the adequacy of different Sentiment Analysis tools - from dictionary-based approaches to state-of-the-art Transformers - for capturing valence and modelling sentiment arcs. We take Ernest Hemingway‘s novel The Old Man and the Sea as a case study to address challenges inherent to literary language, compare Transformer and rule-based systems’ scores with human annotations, and shed light on the complexities of analyzing sentiment in narrative texts. Finally, we emphasize the potential of model ensembles.
%U https://aclanthology.org/2023.nlp4dh-1.25/
%P 219-228
Markdown (Informal)
[Comparing Transformer and Dictionary-based Sentiment Models for Literary Texts: Hemingway as a Case-study](https://aclanthology.org/2023.nlp4dh-1.25/) (Bizzoni & Feldkamp, NLP4DH-IWCLUL 2023)
ACL