@inproceedings{anand-etal-2023-gpt4all,
title = "{GPT}4{A}ll: An Ecosystem of Open Source Compressed Language Models",
author = "Anand, Yuvanesh and
Nussbaum, Zach and
Treat, Adam and
Miller, Aaron and
Guo, Richard and
Schmidt, Benjamin and
Duderstadt, Brandon and
Mulyar, Andriy",
editor = "Tan, Liling and
Milajevs, Dmitrijs and
Chauhan, Geeticka and
Gwinnup, Jeremy and
Rippeth, Elijah",
booktitle = "Proceedings of the 3rd Workshop for Natural Language Processing Open Source Software (NLP-OSS 2023)",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.nlposs-1.7",
doi = "10.18653/v1/2023.nlposs-1.7",
pages = "59--64",
abstract = "Large language models (LLMs) have recently achieved human-level performance on a range of professional and academic benchmarks.The accessibility of these models has lagged behind their performance.State-of-the-art LLMs require costly infrastructure; are only accessible via rate-limited, geo-locked, and censored web interfaces; and lack publicly available code and technical reports.In this paper, we tell the story of GPT4All, a popular open source repository that aims to democratize access to LLMs.We outline the technical details of the original GPT4All model family, as well as the evolution of the GPT4All project from a single model into a fully fledged open source ecosystem.It is our hope that this paper acts as both a technical overview of the original GPT4All models as well as a case study on the subsequent growth of the GPT4All open source ecosystem.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="anand-etal-2023-gpt4all">
<titleInfo>
<title>GPT4All: An Ecosystem of Open Source Compressed Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuvanesh</namePart>
<namePart type="family">Anand</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zach</namePart>
<namePart type="family">Nussbaum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Adam</namePart>
<namePart type="family">Treat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aaron</namePart>
<namePart type="family">Miller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Richard</namePart>
<namePart type="family">Guo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Benjamin</namePart>
<namePart type="family">Schmidt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Brandon</namePart>
<namePart type="family">Duderstadt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andriy</namePart>
<namePart type="family">Mulyar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 3rd Workshop for Natural Language Processing Open Source Software (NLP-OSS 2023)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Liling</namePart>
<namePart type="family">Tan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dmitrijs</namePart>
<namePart type="family">Milajevs</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Geeticka</namePart>
<namePart type="family">Chauhan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jeremy</namePart>
<namePart type="family">Gwinnup</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elijah</namePart>
<namePart type="family">Rippeth</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Large language models (LLMs) have recently achieved human-level performance on a range of professional and academic benchmarks.The accessibility of these models has lagged behind their performance.State-of-the-art LLMs require costly infrastructure; are only accessible via rate-limited, geo-locked, and censored web interfaces; and lack publicly available code and technical reports.In this paper, we tell the story of GPT4All, a popular open source repository that aims to democratize access to LLMs.We outline the technical details of the original GPT4All model family, as well as the evolution of the GPT4All project from a single model into a fully fledged open source ecosystem.It is our hope that this paper acts as both a technical overview of the original GPT4All models as well as a case study on the subsequent growth of the GPT4All open source ecosystem.</abstract>
<identifier type="citekey">anand-etal-2023-gpt4all</identifier>
<identifier type="doi">10.18653/v1/2023.nlposs-1.7</identifier>
<location>
<url>https://aclanthology.org/2023.nlposs-1.7</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>59</start>
<end>64</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T GPT4All: An Ecosystem of Open Source Compressed Language Models
%A Anand, Yuvanesh
%A Nussbaum, Zach
%A Treat, Adam
%A Miller, Aaron
%A Guo, Richard
%A Schmidt, Benjamin
%A Duderstadt, Brandon
%A Mulyar, Andriy
%Y Tan, Liling
%Y Milajevs, Dmitrijs
%Y Chauhan, Geeticka
%Y Gwinnup, Jeremy
%Y Rippeth, Elijah
%S Proceedings of the 3rd Workshop for Natural Language Processing Open Source Software (NLP-OSS 2023)
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F anand-etal-2023-gpt4all
%X Large language models (LLMs) have recently achieved human-level performance on a range of professional and academic benchmarks.The accessibility of these models has lagged behind their performance.State-of-the-art LLMs require costly infrastructure; are only accessible via rate-limited, geo-locked, and censored web interfaces; and lack publicly available code and technical reports.In this paper, we tell the story of GPT4All, a popular open source repository that aims to democratize access to LLMs.We outline the technical details of the original GPT4All model family, as well as the evolution of the GPT4All project from a single model into a fully fledged open source ecosystem.It is our hope that this paper acts as both a technical overview of the original GPT4All models as well as a case study on the subsequent growth of the GPT4All open source ecosystem.
%R 10.18653/v1/2023.nlposs-1.7
%U https://aclanthology.org/2023.nlposs-1.7
%U https://doi.org/10.18653/v1/2023.nlposs-1.7
%P 59-64
Markdown (Informal)
[GPT4All: An Ecosystem of Open Source Compressed Language Models](https://aclanthology.org/2023.nlposs-1.7) (Anand et al., NLPOSS-WS 2023)
ACL
- Yuvanesh Anand, Zach Nussbaum, Adam Treat, Aaron Miller, Richard Guo, Benjamin Schmidt, Brandon Duderstadt, and Andriy Mulyar. 2023. GPT4All: An Ecosystem of Open Source Compressed Language Models. In Proceedings of the 3rd Workshop for Natural Language Processing Open Source Software (NLP-OSS 2023), pages 59–64, Singapore. Association for Computational Linguistics.