@inproceedings{verma-etal-2023-karaka,
title = "K{\=a}raka-Based Answer Retrieval for Question Answering in {I}ndic Languages",
author = "Verma, Devika and
Joshi, Ramprasad S. and
Shivani, Aiman A. and
Gupta, Rohan D.",
editor = "Mitkov, Ruslan and
Angelova, Galia",
booktitle = "Proceedings of the 14th International Conference on Recent Advances in Natural Language Processing",
month = sep,
year = "2023",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd., Shoumen, Bulgaria",
url = "https://aclanthology.org/2023.ranlp-1.129",
pages = "1216--1224",
abstract = "K{\=a}rakas from ancient Paninian grammar form a concise set of semantic roles that capture crucial aspect of sentence meaning pivoted on the action verb. In this paper, we propose employing a k{\=a}raka-based approach for retrieving answers in Indic question-answering systems. To study and evaluate this novel approach, empirical experiments are conducted over large benchmark corpora in Hindi and Marathi. The results obtained demonstrate the effectiveness of the proposed method. Additionally, we explore the varying impact of two approaches for extracting k{\=a}rakas. The literature surveyed and experiments conducted encourage hope that k{\=a}raka annotation can improve communication with machines using natural languages, particularly in low-resource languages.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="verma-etal-2023-karaka">
<titleInfo>
<title>Kāraka-Based Answer Retrieval for Question Answering in Indic Languages</title>
</titleInfo>
<name type="personal">
<namePart type="given">Devika</namePart>
<namePart type="family">Verma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ramprasad</namePart>
<namePart type="given">S</namePart>
<namePart type="family">Joshi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aiman</namePart>
<namePart type="given">A</namePart>
<namePart type="family">Shivani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rohan</namePart>
<namePart type="given">D</namePart>
<namePart type="family">Gupta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 14th International Conference on Recent Advances in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Galia</namePart>
<namePart type="family">Angelova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd., Shoumen, Bulgaria</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Kārakas from ancient Paninian grammar form a concise set of semantic roles that capture crucial aspect of sentence meaning pivoted on the action verb. In this paper, we propose employing a kāraka-based approach for retrieving answers in Indic question-answering systems. To study and evaluate this novel approach, empirical experiments are conducted over large benchmark corpora in Hindi and Marathi. The results obtained demonstrate the effectiveness of the proposed method. Additionally, we explore the varying impact of two approaches for extracting kārakas. The literature surveyed and experiments conducted encourage hope that kāraka annotation can improve communication with machines using natural languages, particularly in low-resource languages.</abstract>
<identifier type="citekey">verma-etal-2023-karaka</identifier>
<location>
<url>https://aclanthology.org/2023.ranlp-1.129</url>
</location>
<part>
<date>2023-09</date>
<extent unit="page">
<start>1216</start>
<end>1224</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Kāraka-Based Answer Retrieval for Question Answering in Indic Languages
%A Verma, Devika
%A Joshi, Ramprasad S.
%A Shivani, Aiman A.
%A Gupta, Rohan D.
%Y Mitkov, Ruslan
%Y Angelova, Galia
%S Proceedings of the 14th International Conference on Recent Advances in Natural Language Processing
%D 2023
%8 September
%I INCOMA Ltd., Shoumen, Bulgaria
%C Varna, Bulgaria
%F verma-etal-2023-karaka
%X Kārakas from ancient Paninian grammar form a concise set of semantic roles that capture crucial aspect of sentence meaning pivoted on the action verb. In this paper, we propose employing a kāraka-based approach for retrieving answers in Indic question-answering systems. To study and evaluate this novel approach, empirical experiments are conducted over large benchmark corpora in Hindi and Marathi. The results obtained demonstrate the effectiveness of the proposed method. Additionally, we explore the varying impact of two approaches for extracting kārakas. The literature surveyed and experiments conducted encourage hope that kāraka annotation can improve communication with machines using natural languages, particularly in low-resource languages.
%U https://aclanthology.org/2023.ranlp-1.129
%P 1216-1224
Markdown (Informal)
[Kāraka-Based Answer Retrieval for Question Answering in Indic Languages](https://aclanthology.org/2023.ranlp-1.129) (Verma et al., RANLP 2023)
ACL