@inproceedings{dahou-etal-2023-performance,
title = "Performance Analysis of {A}rabic Pre-trained Models on Named Entity Recognition Task",
author = "Dahou, Abdelhalim Hafedh and
Cheragui, Mohamed Amine and
Abdelali, Ahmed",
editor = "Mitkov, Ruslan and
Angelova, Galia",
booktitle = "Proceedings of the 14th International Conference on Recent Advances in Natural Language Processing",
month = sep,
year = "2023",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd., Shoumen, Bulgaria",
url = "https://aclanthology.org/2023.ranlp-1.51",
pages = "458--467",
abstract = "Named Entity Recognition (NER) is a crucial task within natural language processing (NLP) that entails the identification and classification of entities, such as person, organization and location. This study delves into NER specifically in the Arabic language, focusing on the Algerian dialect. While previous research in NER has primarily concentrated on Modern Standard Arabic (MSA), the advent of social media has prompted a need to address the variations found in different Arabic dialects. Moreover, given the notable achievements of Large-scale pre-trained models (PTMs) based on the BERT architecture, this paper aims to evaluate Arabic pre-trained models using an Algerian dataset that covers different domains and writing styles. Additionally, an error analysis is conducted to identify PTMs{'} limitations, and an investigation is carried out to assess the performance of trained MSA models on the Algerian dialect. The experimental results and subsequent analysis shed light on the complexities of NER in Arabic, offering valuable insights for future research endeavors.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="dahou-etal-2023-performance">
<titleInfo>
<title>Performance Analysis of Arabic Pre-trained Models on Named Entity Recognition Task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Abdelhalim</namePart>
<namePart type="given">Hafedh</namePart>
<namePart type="family">Dahou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohamed</namePart>
<namePart type="given">Amine</namePart>
<namePart type="family">Cheragui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ahmed</namePart>
<namePart type="family">Abdelali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 14th International Conference on Recent Advances in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Galia</namePart>
<namePart type="family">Angelova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd., Shoumen, Bulgaria</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Named Entity Recognition (NER) is a crucial task within natural language processing (NLP) that entails the identification and classification of entities, such as person, organization and location. This study delves into NER specifically in the Arabic language, focusing on the Algerian dialect. While previous research in NER has primarily concentrated on Modern Standard Arabic (MSA), the advent of social media has prompted a need to address the variations found in different Arabic dialects. Moreover, given the notable achievements of Large-scale pre-trained models (PTMs) based on the BERT architecture, this paper aims to evaluate Arabic pre-trained models using an Algerian dataset that covers different domains and writing styles. Additionally, an error analysis is conducted to identify PTMs’ limitations, and an investigation is carried out to assess the performance of trained MSA models on the Algerian dialect. The experimental results and subsequent analysis shed light on the complexities of NER in Arabic, offering valuable insights for future research endeavors.</abstract>
<identifier type="citekey">dahou-etal-2023-performance</identifier>
<location>
<url>https://aclanthology.org/2023.ranlp-1.51</url>
</location>
<part>
<date>2023-09</date>
<extent unit="page">
<start>458</start>
<end>467</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Performance Analysis of Arabic Pre-trained Models on Named Entity Recognition Task
%A Dahou, Abdelhalim Hafedh
%A Cheragui, Mohamed Amine
%A Abdelali, Ahmed
%Y Mitkov, Ruslan
%Y Angelova, Galia
%S Proceedings of the 14th International Conference on Recent Advances in Natural Language Processing
%D 2023
%8 September
%I INCOMA Ltd., Shoumen, Bulgaria
%C Varna, Bulgaria
%F dahou-etal-2023-performance
%X Named Entity Recognition (NER) is a crucial task within natural language processing (NLP) that entails the identification and classification of entities, such as person, organization and location. This study delves into NER specifically in the Arabic language, focusing on the Algerian dialect. While previous research in NER has primarily concentrated on Modern Standard Arabic (MSA), the advent of social media has prompted a need to address the variations found in different Arabic dialects. Moreover, given the notable achievements of Large-scale pre-trained models (PTMs) based on the BERT architecture, this paper aims to evaluate Arabic pre-trained models using an Algerian dataset that covers different domains and writing styles. Additionally, an error analysis is conducted to identify PTMs’ limitations, and an investigation is carried out to assess the performance of trained MSA models on the Algerian dialect. The experimental results and subsequent analysis shed light on the complexities of NER in Arabic, offering valuable insights for future research endeavors.
%U https://aclanthology.org/2023.ranlp-1.51
%P 458-467
Markdown (Informal)
[Performance Analysis of Arabic Pre-trained Models on Named Entity Recognition Task](https://aclanthology.org/2023.ranlp-1.51) (Dahou et al., RANLP 2023)
ACL