@inproceedings{koontz-etal-2023-evaluating,
title = "Evaluating Data Augmentation for Medication Identification in Clinical Notes",
author = "Koontz, Jordan and
Oronoz, Maite and
P{\'e}rez, Alicia",
editor = "Mitkov, Ruslan and
Angelova, Galia",
booktitle = "Proceedings of the 14th International Conference on Recent Advances in Natural Language Processing",
month = sep,
year = "2023",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd., Shoumen, Bulgaria",
url = "https://aclanthology.org/2023.ranlp-1.63",
pages = "578--585",
abstract = "We evaluate the effectiveness of using data augmentation to improve the generalizability of a Named Entity Recognition model for the task of medication identification in clinical notes. We compare disparate data augmentation methods, namely mention-replacement and a generative model, for creating synthetic training examples. Through experiments on the n2c2 2022 Track 1 Contextualized Medication Event Extraction data set, we show that data augmentation with supplemental examples created with GPT-3 can boost the performance of a transformer-based model for small training sets.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="koontz-etal-2023-evaluating">
<titleInfo>
<title>Evaluating Data Augmentation for Medication Identification in Clinical Notes</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Koontz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maite</namePart>
<namePart type="family">Oronoz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alicia</namePart>
<namePart type="family">Pérez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 14th International Conference on Recent Advances in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Galia</namePart>
<namePart type="family">Angelova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd., Shoumen, Bulgaria</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We evaluate the effectiveness of using data augmentation to improve the generalizability of a Named Entity Recognition model for the task of medication identification in clinical notes. We compare disparate data augmentation methods, namely mention-replacement and a generative model, for creating synthetic training examples. Through experiments on the n2c2 2022 Track 1 Contextualized Medication Event Extraction data set, we show that data augmentation with supplemental examples created with GPT-3 can boost the performance of a transformer-based model for small training sets.</abstract>
<identifier type="citekey">koontz-etal-2023-evaluating</identifier>
<location>
<url>https://aclanthology.org/2023.ranlp-1.63</url>
</location>
<part>
<date>2023-09</date>
<extent unit="page">
<start>578</start>
<end>585</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Evaluating Data Augmentation for Medication Identification in Clinical Notes
%A Koontz, Jordan
%A Oronoz, Maite
%A Pérez, Alicia
%Y Mitkov, Ruslan
%Y Angelova, Galia
%S Proceedings of the 14th International Conference on Recent Advances in Natural Language Processing
%D 2023
%8 September
%I INCOMA Ltd., Shoumen, Bulgaria
%C Varna, Bulgaria
%F koontz-etal-2023-evaluating
%X We evaluate the effectiveness of using data augmentation to improve the generalizability of a Named Entity Recognition model for the task of medication identification in clinical notes. We compare disparate data augmentation methods, namely mention-replacement and a generative model, for creating synthetic training examples. Through experiments on the n2c2 2022 Track 1 Contextualized Medication Event Extraction data set, we show that data augmentation with supplemental examples created with GPT-3 can boost the performance of a transformer-based model for small training sets.
%U https://aclanthology.org/2023.ranlp-1.63
%P 578-585
Markdown (Informal)
[Evaluating Data Augmentation for Medication Identification in Clinical Notes](https://aclanthology.org/2023.ranlp-1.63) (Koontz et al., RANLP 2023)
ACL