@inproceedings{li-etal-2023-sign,
title = "Sign Language Recognition and Translation: A Multi-Modal Approach Using Computer Vision and Natural Language Processing",
author = "Li, Jacky and
Gerdes, Jaren and
Gojit, James and
Tao, Austin and
Katke, Samyak and
Nguyen, Kate and
Ahmadnia, Benyamin",
editor = "Mitkov, Ruslan and
Angelova, Galia",
booktitle = "Proceedings of the 14th International Conference on Recent Advances in Natural Language Processing",
month = sep,
year = "2023",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd., Shoumen, Bulgaria",
url = "https://aclanthology.org/2023.ranlp-1.71",
pages = "658--665",
abstract = "Sign-to-Text (S2T) is a hand gesture recognition program in the American Sign Language (ASL) domain. The primary objective of S2T is to classify standard ASL alphabets and custom signs and convert the classifications into a stream of text using neural networks. This paper addresses the shortcomings of pure Computer Vision techniques and applies Natural Language Processing (NLP) as an additional layer of complexity to increase S2T{'}s robustness.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-etal-2023-sign">
<titleInfo>
<title>Sign Language Recognition and Translation: A Multi-Modal Approach Using Computer Vision and Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jacky</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jaren</namePart>
<namePart type="family">Gerdes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="family">Gojit</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Austin</namePart>
<namePart type="family">Tao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Samyak</namePart>
<namePart type="family">Katke</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kate</namePart>
<namePart type="family">Nguyen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Benyamin</namePart>
<namePart type="family">Ahmadnia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 14th International Conference on Recent Advances in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Galia</namePart>
<namePart type="family">Angelova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd., Shoumen, Bulgaria</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Sign-to-Text (S2T) is a hand gesture recognition program in the American Sign Language (ASL) domain. The primary objective of S2T is to classify standard ASL alphabets and custom signs and convert the classifications into a stream of text using neural networks. This paper addresses the shortcomings of pure Computer Vision techniques and applies Natural Language Processing (NLP) as an additional layer of complexity to increase S2T’s robustness.</abstract>
<identifier type="citekey">li-etal-2023-sign</identifier>
<location>
<url>https://aclanthology.org/2023.ranlp-1.71</url>
</location>
<part>
<date>2023-09</date>
<extent unit="page">
<start>658</start>
<end>665</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Sign Language Recognition and Translation: A Multi-Modal Approach Using Computer Vision and Natural Language Processing
%A Li, Jacky
%A Gerdes, Jaren
%A Gojit, James
%A Tao, Austin
%A Katke, Samyak
%A Nguyen, Kate
%A Ahmadnia, Benyamin
%Y Mitkov, Ruslan
%Y Angelova, Galia
%S Proceedings of the 14th International Conference on Recent Advances in Natural Language Processing
%D 2023
%8 September
%I INCOMA Ltd., Shoumen, Bulgaria
%C Varna, Bulgaria
%F li-etal-2023-sign
%X Sign-to-Text (S2T) is a hand gesture recognition program in the American Sign Language (ASL) domain. The primary objective of S2T is to classify standard ASL alphabets and custom signs and convert the classifications into a stream of text using neural networks. This paper addresses the shortcomings of pure Computer Vision techniques and applies Natural Language Processing (NLP) as an additional layer of complexity to increase S2T’s robustness.
%U https://aclanthology.org/2023.ranlp-1.71
%P 658-665
Markdown (Informal)
[Sign Language Recognition and Translation: A Multi-Modal Approach Using Computer Vision and Natural Language Processing](https://aclanthology.org/2023.ranlp-1.71) (Li et al., RANLP 2023)
ACL
- Jacky Li, Jaren Gerdes, James Gojit, Austin Tao, Samyak Katke, Kate Nguyen, and Benyamin Ahmadnia. 2023. Sign Language Recognition and Translation: A Multi-Modal Approach Using Computer Vision and Natural Language Processing. In Proceedings of the 14th International Conference on Recent Advances in Natural Language Processing, pages 658–665, Varna, Bulgaria. INCOMA Ltd., Shoumen, Bulgaria.