@inproceedings{liu-poesio-2023-data,
title = "Data Augmentation for Fake Reviews Detection",
author = "Liu, Ming and
Poesio, Massimo",
editor = "Mitkov, Ruslan and
Angelova, Galia",
booktitle = "Proceedings of the 14th International Conference on Recent Advances in Natural Language Processing",
month = sep,
year = "2023",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd., Shoumen, Bulgaria",
url = "https://aclanthology.org/2023.ranlp-1.73",
pages = "673--680",
abstract = "In this research, we studied the relationship between data augmentation and model accuracy for the task of fake review detection. We used data generation methods to augment two different fake review datasets and compared the performance of models trained with the original data and with the augmented data. Our results show that the accuracy of our fake review detection model can be improved by 0.31 percentage points on DeRev Test and by 7.65 percentage points on Amazon Test by using the augmented datasets.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liu-poesio-2023-data">
<titleInfo>
<title>Data Augmentation for Fake Reviews Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ming</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Massimo</namePart>
<namePart type="family">Poesio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 14th International Conference on Recent Advances in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Galia</namePart>
<namePart type="family">Angelova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd., Shoumen, Bulgaria</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this research, we studied the relationship between data augmentation and model accuracy for the task of fake review detection. We used data generation methods to augment two different fake review datasets and compared the performance of models trained with the original data and with the augmented data. Our results show that the accuracy of our fake review detection model can be improved by 0.31 percentage points on DeRev Test and by 7.65 percentage points on Amazon Test by using the augmented datasets.</abstract>
<identifier type="citekey">liu-poesio-2023-data</identifier>
<location>
<url>https://aclanthology.org/2023.ranlp-1.73</url>
</location>
<part>
<date>2023-09</date>
<extent unit="page">
<start>673</start>
<end>680</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Data Augmentation for Fake Reviews Detection
%A Liu, Ming
%A Poesio, Massimo
%Y Mitkov, Ruslan
%Y Angelova, Galia
%S Proceedings of the 14th International Conference on Recent Advances in Natural Language Processing
%D 2023
%8 September
%I INCOMA Ltd., Shoumen, Bulgaria
%C Varna, Bulgaria
%F liu-poesio-2023-data
%X In this research, we studied the relationship between data augmentation and model accuracy for the task of fake review detection. We used data generation methods to augment two different fake review datasets and compared the performance of models trained with the original data and with the augmented data. Our results show that the accuracy of our fake review detection model can be improved by 0.31 percentage points on DeRev Test and by 7.65 percentage points on Amazon Test by using the augmented datasets.
%U https://aclanthology.org/2023.ranlp-1.73
%P 673-680
Markdown (Informal)
[Data Augmentation for Fake Reviews Detection](https://aclanthology.org/2023.ranlp-1.73) (Liu & Poesio, RANLP 2023)
ACL
- Ming Liu and Massimo Poesio. 2023. Data Augmentation for Fake Reviews Detection. In Proceedings of the 14th International Conference on Recent Advances in Natural Language Processing, pages 673–680, Varna, Bulgaria. INCOMA Ltd., Shoumen, Bulgaria.