@inproceedings{nedumpozhimana-etal-2023-medical,
title = "Medical Concept Mention Identification in Social Media Posts Using a Small Number of Sample References",
author = "Nedumpozhimana, Vasudevan and
Rautmare, Sneha and
Gower, Meegan and
Jain, Nishtha and
Popovi{\'c}, Maja and
Buffini, Patricia and
Kelleher, John",
editor = "Mitkov, Ruslan and
Angelova, Galia",
booktitle = "Proceedings of the 14th International Conference on Recent Advances in Natural Language Processing",
month = sep,
year = "2023",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd., Shoumen, Bulgaria",
url = "https://aclanthology.org/2023.ranlp-1.84",
pages = "777--784",
abstract = "Identification of mentions of medical concepts in social media text can provide useful information for caseload prediction of diseases like Covid-19 and Measles. We propose a simple model for the automatic identification of the medical concept mentions in the social media text. We validate the effectiveness of the proposed model on Twitter, Reddit, and News/Media datasets.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nedumpozhimana-etal-2023-medical">
<titleInfo>
<title>Medical Concept Mention Identification in Social Media Posts Using a Small Number of Sample References</title>
</titleInfo>
<name type="personal">
<namePart type="given">Vasudevan</namePart>
<namePart type="family">Nedumpozhimana</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sneha</namePart>
<namePart type="family">Rautmare</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Meegan</namePart>
<namePart type="family">Gower</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nishtha</namePart>
<namePart type="family">Jain</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maja</namePart>
<namePart type="family">Popović</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Patricia</namePart>
<namePart type="family">Buffini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">John</namePart>
<namePart type="family">Kelleher</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 14th International Conference on Recent Advances in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Galia</namePart>
<namePart type="family">Angelova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd., Shoumen, Bulgaria</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Identification of mentions of medical concepts in social media text can provide useful information for caseload prediction of diseases like Covid-19 and Measles. We propose a simple model for the automatic identification of the medical concept mentions in the social media text. We validate the effectiveness of the proposed model on Twitter, Reddit, and News/Media datasets.</abstract>
<identifier type="citekey">nedumpozhimana-etal-2023-medical</identifier>
<location>
<url>https://aclanthology.org/2023.ranlp-1.84</url>
</location>
<part>
<date>2023-09</date>
<extent unit="page">
<start>777</start>
<end>784</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Medical Concept Mention Identification in Social Media Posts Using a Small Number of Sample References
%A Nedumpozhimana, Vasudevan
%A Rautmare, Sneha
%A Gower, Meegan
%A Jain, Nishtha
%A Popović, Maja
%A Buffini, Patricia
%A Kelleher, John
%Y Mitkov, Ruslan
%Y Angelova, Galia
%S Proceedings of the 14th International Conference on Recent Advances in Natural Language Processing
%D 2023
%8 September
%I INCOMA Ltd., Shoumen, Bulgaria
%C Varna, Bulgaria
%F nedumpozhimana-etal-2023-medical
%X Identification of mentions of medical concepts in social media text can provide useful information for caseload prediction of diseases like Covid-19 and Measles. We propose a simple model for the automatic identification of the medical concept mentions in the social media text. We validate the effectiveness of the proposed model on Twitter, Reddit, and News/Media datasets.
%U https://aclanthology.org/2023.ranlp-1.84
%P 777-784
Markdown (Informal)
[Medical Concept Mention Identification in Social Media Posts Using a Small Number of Sample References](https://aclanthology.org/2023.ranlp-1.84) (Nedumpozhimana et al., RANLP 2023)
ACL
- Vasudevan Nedumpozhimana, Sneha Rautmare, Meegan Gower, Nishtha Jain, Maja Popović, Patricia Buffini, and John Kelleher. 2023. Medical Concept Mention Identification in Social Media Posts Using a Small Number of Sample References. In Proceedings of the 14th International Conference on Recent Advances in Natural Language Processing, pages 777–784, Varna, Bulgaria. INCOMA Ltd., Shoumen, Bulgaria.