@inproceedings{norre-etal-2023-word,
title = "Word Sense Disambiguation for Automatic Translation of Medical Dialogues into Pictographs",
author = "Norr{\'e}, Magali and
Cardon, R{\'e}mi and
Vandeghinste, Vincent and
Fran{\c{c}}ois, Thomas",
editor = "Mitkov, Ruslan and
Angelova, Galia",
booktitle = "Proceedings of the 14th International Conference on Recent Advances in Natural Language Processing",
month = sep,
year = "2023",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd., Shoumen, Bulgaria",
url = "https://aclanthology.org/2023.ranlp-1.87",
pages = "803--812",
abstract = "Word sense disambiguation is an NLP task embedded in different applications. We propose to evaluate its contribution to the automatic translation of French texts into pictographs, in the context of communication between doctors and patients with an intellectual disability. Different general and/or medical language models (Word2Vec, fastText, CamemBERT, FlauBERT, DrBERT, and CamemBERT-bio) are tested in order to choose semantically correct pictographs leveraging the synsets in the French WordNets (WOLF and WoNeF). The results of our automatic evaluations show that our method based on Word2Vec and fastText significantly improves the precision of medical translations into pictographs. We also present an evaluation corpus adapted to this task.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="norre-etal-2023-word">
<titleInfo>
<title>Word Sense Disambiguation for Automatic Translation of Medical Dialogues into Pictographs</title>
</titleInfo>
<name type="personal">
<namePart type="given">Magali</namePart>
<namePart type="family">Norré</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rémi</namePart>
<namePart type="family">Cardon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Vandeghinste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thomas</namePart>
<namePart type="family">François</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 14th International Conference on Recent Advances in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Galia</namePart>
<namePart type="family">Angelova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd., Shoumen, Bulgaria</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Word sense disambiguation is an NLP task embedded in different applications. We propose to evaluate its contribution to the automatic translation of French texts into pictographs, in the context of communication between doctors and patients with an intellectual disability. Different general and/or medical language models (Word2Vec, fastText, CamemBERT, FlauBERT, DrBERT, and CamemBERT-bio) are tested in order to choose semantically correct pictographs leveraging the synsets in the French WordNets (WOLF and WoNeF). The results of our automatic evaluations show that our method based on Word2Vec and fastText significantly improves the precision of medical translations into pictographs. We also present an evaluation corpus adapted to this task.</abstract>
<identifier type="citekey">norre-etal-2023-word</identifier>
<location>
<url>https://aclanthology.org/2023.ranlp-1.87</url>
</location>
<part>
<date>2023-09</date>
<extent unit="page">
<start>803</start>
<end>812</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Word Sense Disambiguation for Automatic Translation of Medical Dialogues into Pictographs
%A Norré, Magali
%A Cardon, Rémi
%A Vandeghinste, Vincent
%A François, Thomas
%Y Mitkov, Ruslan
%Y Angelova, Galia
%S Proceedings of the 14th International Conference on Recent Advances in Natural Language Processing
%D 2023
%8 September
%I INCOMA Ltd., Shoumen, Bulgaria
%C Varna, Bulgaria
%F norre-etal-2023-word
%X Word sense disambiguation is an NLP task embedded in different applications. We propose to evaluate its contribution to the automatic translation of French texts into pictographs, in the context of communication between doctors and patients with an intellectual disability. Different general and/or medical language models (Word2Vec, fastText, CamemBERT, FlauBERT, DrBERT, and CamemBERT-bio) are tested in order to choose semantically correct pictographs leveraging the synsets in the French WordNets (WOLF and WoNeF). The results of our automatic evaluations show that our method based on Word2Vec and fastText significantly improves the precision of medical translations into pictographs. We also present an evaluation corpus adapted to this task.
%U https://aclanthology.org/2023.ranlp-1.87
%P 803-812
Markdown (Informal)
[Word Sense Disambiguation for Automatic Translation of Medical Dialogues into Pictographs](https://aclanthology.org/2023.ranlp-1.87) (Norré et al., RANLP 2023)
ACL