TechSSN at SemEval-2023 Task 12: Monolingual Sentiment Classification in Hausa Tweets

Nishaanth Ramanathan, Rajalakshmi Sivanaiah, Angel Deborah S, Mirnalinee Thanka Nadar Thanagathai


Abstract
This paper elaborates on our work in designing a system for SemEval 2023 Task 12: AfriSentiSemEval, which involves sentiment analysis for low-resource African languages using the Twitter dataset. We utilised a pre-trained model to perform sentiment classification in Hausa language tweets. We used a multilingual version of the roBERTa model, which is pretrained on 100 languages, to classify sentiments in Hausa. To tokenize the text, we used the AfriBERTa model, which is specifically pretrained on African languages.
Anthology ID:
2023.semeval-1.165
Volume:
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)
Month:
July
Year:
2023
Address:
Toronto, Canada
Editors:
Atul Kr. Ojha, A. Seza Doğruöz, Giovanni Da San Martino, Harish Tayyar Madabushi, Ritesh Kumar, Elisa Sartori
Venue:
SemEval
SIG:
SIGLEX
Publisher:
Association for Computational Linguistics
Note:
Pages:
1190–1194
Language:
URL:
https://aclanthology.org/2023.semeval-1.165
DOI:
10.18653/v1/2023.semeval-1.165
Bibkey:
Cite (ACL):
Nishaanth Ramanathan, Rajalakshmi Sivanaiah, Angel Deborah S, and Mirnalinee Thanka Nadar Thanagathai. 2023. TechSSN at SemEval-2023 Task 12: Monolingual Sentiment Classification in Hausa Tweets. In Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023), pages 1190–1194, Toronto, Canada. Association for Computational Linguistics.
Cite (Informal):
TechSSN at SemEval-2023 Task 12: Monolingual Sentiment Classification in Hausa Tweets (Ramanathan et al., SemEval 2023)
Copy Citation:
PDF:
https://aclanthology.org/2023.semeval-1.165.pdf