@inproceedings{sorensen-etal-2023-juage,
title = "{JUAGE} at {S}em{E}val-2023 Task 10: Parameter Efficient Classification",
author = "Sorensen, Jeffrey and
Korre, Katerina and
Pavlopoulos, John and
Tomanek, Katrin and
Thain, Nithum and
Dixon, Lucas and
Laugier, L{\'e}o",
editor = {Ojha, Atul Kr. and
Do{\u{g}}ru{\"o}z, A. Seza and
Da San Martino, Giovanni and
Tayyar Madabushi, Harish and
Kumar, Ritesh and
Sartori, Elisa},
booktitle = "Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.semeval-1.166/",
doi = "10.18653/v1/2023.semeval-1.166",
pages = "1195--1203",
abstract = "Using pre-trained language models to implement classifiers from small to modest amounts of training data is an area of active research. The ability of large language models to generalize from few-shot examples and to produce strong classifiers is extended using the engineering approach of parameter-efficient tuning. Using the Explainable Detection of Online Sexism (EDOS) training data and a small number of trainable weights to create a tuned prompt vector, a competitive model for this task was built, which was top-ranked in Subtask B."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sorensen-etal-2023-juage">
<titleInfo>
<title>JUAGE at SemEval-2023 Task 10: Parameter Efficient Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jeffrey</namePart>
<namePart type="family">Sorensen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Katerina</namePart>
<namePart type="family">Korre</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">John</namePart>
<namePart type="family">Pavlopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Katrin</namePart>
<namePart type="family">Tomanek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nithum</namePart>
<namePart type="family">Thain</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucas</namePart>
<namePart type="family">Dixon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Léo</namePart>
<namePart type="family">Laugier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Atul</namePart>
<namePart type="given">Kr.</namePart>
<namePart type="family">Ojha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="given">Seza</namePart>
<namePart type="family">Doğruöz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giovanni</namePart>
<namePart type="family">Da San Martino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Harish</namePart>
<namePart type="family">Tayyar Madabushi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ritesh</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elisa</namePart>
<namePart type="family">Sartori</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Using pre-trained language models to implement classifiers from small to modest amounts of training data is an area of active research. The ability of large language models to generalize from few-shot examples and to produce strong classifiers is extended using the engineering approach of parameter-efficient tuning. Using the Explainable Detection of Online Sexism (EDOS) training data and a small number of trainable weights to create a tuned prompt vector, a competitive model for this task was built, which was top-ranked in Subtask B.</abstract>
<identifier type="citekey">sorensen-etal-2023-juage</identifier>
<identifier type="doi">10.18653/v1/2023.semeval-1.166</identifier>
<location>
<url>https://aclanthology.org/2023.semeval-1.166/</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>1195</start>
<end>1203</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T JUAGE at SemEval-2023 Task 10: Parameter Efficient Classification
%A Sorensen, Jeffrey
%A Korre, Katerina
%A Pavlopoulos, John
%A Tomanek, Katrin
%A Thain, Nithum
%A Dixon, Lucas
%A Laugier, Léo
%Y Ojha, Atul Kr.
%Y Doğruöz, A. Seza
%Y Da San Martino, Giovanni
%Y Tayyar Madabushi, Harish
%Y Kumar, Ritesh
%Y Sartori, Elisa
%S Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F sorensen-etal-2023-juage
%X Using pre-trained language models to implement classifiers from small to modest amounts of training data is an area of active research. The ability of large language models to generalize from few-shot examples and to produce strong classifiers is extended using the engineering approach of parameter-efficient tuning. Using the Explainable Detection of Online Sexism (EDOS) training data and a small number of trainable weights to create a tuned prompt vector, a competitive model for this task was built, which was top-ranked in Subtask B.
%R 10.18653/v1/2023.semeval-1.166
%U https://aclanthology.org/2023.semeval-1.166/
%U https://doi.org/10.18653/v1/2023.semeval-1.166
%P 1195-1203
Markdown (Informal)
[JUAGE at SemEval-2023 Task 10: Parameter Efficient Classification](https://aclanthology.org/2023.semeval-1.166/) (Sorensen et al., SemEval 2023)
ACL
- Jeffrey Sorensen, Katerina Korre, John Pavlopoulos, Katrin Tomanek, Nithum Thain, Lucas Dixon, and Léo Laugier. 2023. JUAGE at SemEval-2023 Task 10: Parameter Efficient Classification. In Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023), pages 1195–1203, Toronto, Canada. Association for Computational Linguistics.