@inproceedings{cabrera-diego-gheewala-2023-jus,
title = "Jus Mundi at {S}em{E}val-2023 Task 6: Using a Frustratingly Easy Domain Adaption for a Legal Named Entity Recognition System",
author = "Cabrera-Diego, Luis Adri{\'a}n and
Gheewala, Akshita",
editor = {Ojha, Atul Kr. and
Do{\u{g}}ru{\"o}z, A. Seza and
Da San Martino, Giovanni and
Tayyar Madabushi, Harish and
Kumar, Ritesh and
Sartori, Elisa},
booktitle = "Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.semeval-1.247/",
doi = "10.18653/v1/2023.semeval-1.247",
pages = "1783--1790",
abstract = "In this work, we present a Named Entity Recognition (NER) system that was trained using a Frustratingly Easy Domain Adaptation (FEDA) over multiple legal corpora. The goal was to create a NER capable of detecting 14 types of legal named entities in Indian judgments. Besides the FEDA architecture, we explored a method based on overlapping context and averaging tensors to process long input texts, which can be beneficial when processing legal documents. The proposed NER reached an F1-score of 0.9007 in the sub-task B of Semeval-2023 Task 6, Understanding Legal Texts."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="cabrera-diego-gheewala-2023-jus">
<titleInfo>
<title>Jus Mundi at SemEval-2023 Task 6: Using a Frustratingly Easy Domain Adaption for a Legal Named Entity Recognition System</title>
</titleInfo>
<name type="personal">
<namePart type="given">Luis</namePart>
<namePart type="given">Adrián</namePart>
<namePart type="family">Cabrera-Diego</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Akshita</namePart>
<namePart type="family">Gheewala</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Atul</namePart>
<namePart type="given">Kr.</namePart>
<namePart type="family">Ojha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="given">Seza</namePart>
<namePart type="family">Doğruöz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giovanni</namePart>
<namePart type="family">Da San Martino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Harish</namePart>
<namePart type="family">Tayyar Madabushi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ritesh</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elisa</namePart>
<namePart type="family">Sartori</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this work, we present a Named Entity Recognition (NER) system that was trained using a Frustratingly Easy Domain Adaptation (FEDA) over multiple legal corpora. The goal was to create a NER capable of detecting 14 types of legal named entities in Indian judgments. Besides the FEDA architecture, we explored a method based on overlapping context and averaging tensors to process long input texts, which can be beneficial when processing legal documents. The proposed NER reached an F1-score of 0.9007 in the sub-task B of Semeval-2023 Task 6, Understanding Legal Texts.</abstract>
<identifier type="citekey">cabrera-diego-gheewala-2023-jus</identifier>
<identifier type="doi">10.18653/v1/2023.semeval-1.247</identifier>
<location>
<url>https://aclanthology.org/2023.semeval-1.247/</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>1783</start>
<end>1790</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Jus Mundi at SemEval-2023 Task 6: Using a Frustratingly Easy Domain Adaption for a Legal Named Entity Recognition System
%A Cabrera-Diego, Luis Adrián
%A Gheewala, Akshita
%Y Ojha, Atul Kr.
%Y Doğruöz, A. Seza
%Y Da San Martino, Giovanni
%Y Tayyar Madabushi, Harish
%Y Kumar, Ritesh
%Y Sartori, Elisa
%S Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F cabrera-diego-gheewala-2023-jus
%X In this work, we present a Named Entity Recognition (NER) system that was trained using a Frustratingly Easy Domain Adaptation (FEDA) over multiple legal corpora. The goal was to create a NER capable of detecting 14 types of legal named entities in Indian judgments. Besides the FEDA architecture, we explored a method based on overlapping context and averaging tensors to process long input texts, which can be beneficial when processing legal documents. The proposed NER reached an F1-score of 0.9007 in the sub-task B of Semeval-2023 Task 6, Understanding Legal Texts.
%R 10.18653/v1/2023.semeval-1.247
%U https://aclanthology.org/2023.semeval-1.247/
%U https://doi.org/10.18653/v1/2023.semeval-1.247
%P 1783-1790
Markdown (Informal)
[Jus Mundi at SemEval-2023 Task 6: Using a Frustratingly Easy Domain Adaption for a Legal Named Entity Recognition System](https://aclanthology.org/2023.semeval-1.247/) (Cabrera-Diego & Gheewala, SemEval 2023)
ACL