@inproceedings{deturck-etal-2023-ertim,
title = "Ertim at {S}em{E}val-2023 Task 2: Fine-tuning of Transformer Language Models and External Knowledge Leveraging for {NER} in {F}arsi, {E}nglish, {F}rench and {C}hinese",
author = "Deturck, Kevin and
Magistry, Pierre and
Diot-Parvaz Ahmad, B{\'e}n{\'e}dicte and
Wang, Ilaine and
Nouvel, Damien and
Lafayette, Hugo",
editor = {Ojha, Atul Kr. and
Do{\u{g}}ru{\"o}z, A. Seza and
Da San Martino, Giovanni and
Tayyar Madabushi, Harish and
Kumar, Ritesh and
Sartori, Elisa},
booktitle = "Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.semeval-1.306/",
doi = "10.18653/v1/2023.semeval-1.306",
pages = "2211--2215",
abstract = "Transformer language models are now a solid baseline for Named Entity Recognition and can be significantly improved by leveraging complementary resources, either by integrating external knowledge or by annotating additional data. In a preliminary step, this work presents experiments on fine-tuning transformer models. Then, a set of experiments has been conducted with a Wikipedia-based reclassification system. Additionally, we conducted a small annotation campaign on the Farsi language to evaluate the impact of additional data. These two methods with complementary resources showed improvements compared to fine-tuning only."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="deturck-etal-2023-ertim">
<titleInfo>
<title>Ertim at SemEval-2023 Task 2: Fine-tuning of Transformer Language Models and External Knowledge Leveraging for NER in Farsi, English, French and Chinese</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Deturck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pierre</namePart>
<namePart type="family">Magistry</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bénédicte</namePart>
<namePart type="family">Diot-Parvaz Ahmad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ilaine</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Damien</namePart>
<namePart type="family">Nouvel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hugo</namePart>
<namePart type="family">Lafayette</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Atul</namePart>
<namePart type="given">Kr.</namePart>
<namePart type="family">Ojha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="given">Seza</namePart>
<namePart type="family">Doğruöz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giovanni</namePart>
<namePart type="family">Da San Martino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Harish</namePart>
<namePart type="family">Tayyar Madabushi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ritesh</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elisa</namePart>
<namePart type="family">Sartori</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Transformer language models are now a solid baseline for Named Entity Recognition and can be significantly improved by leveraging complementary resources, either by integrating external knowledge or by annotating additional data. In a preliminary step, this work presents experiments on fine-tuning transformer models. Then, a set of experiments has been conducted with a Wikipedia-based reclassification system. Additionally, we conducted a small annotation campaign on the Farsi language to evaluate the impact of additional data. These two methods with complementary resources showed improvements compared to fine-tuning only.</abstract>
<identifier type="citekey">deturck-etal-2023-ertim</identifier>
<identifier type="doi">10.18653/v1/2023.semeval-1.306</identifier>
<location>
<url>https://aclanthology.org/2023.semeval-1.306/</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>2211</start>
<end>2215</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Ertim at SemEval-2023 Task 2: Fine-tuning of Transformer Language Models and External Knowledge Leveraging for NER in Farsi, English, French and Chinese
%A Deturck, Kevin
%A Magistry, Pierre
%A Diot-Parvaz Ahmad, Bénédicte
%A Wang, Ilaine
%A Nouvel, Damien
%A Lafayette, Hugo
%Y Ojha, Atul Kr.
%Y Doğruöz, A. Seza
%Y Da San Martino, Giovanni
%Y Tayyar Madabushi, Harish
%Y Kumar, Ritesh
%Y Sartori, Elisa
%S Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F deturck-etal-2023-ertim
%X Transformer language models are now a solid baseline for Named Entity Recognition and can be significantly improved by leveraging complementary resources, either by integrating external knowledge or by annotating additional data. In a preliminary step, this work presents experiments on fine-tuning transformer models. Then, a set of experiments has been conducted with a Wikipedia-based reclassification system. Additionally, we conducted a small annotation campaign on the Farsi language to evaluate the impact of additional data. These two methods with complementary resources showed improvements compared to fine-tuning only.
%R 10.18653/v1/2023.semeval-1.306
%U https://aclanthology.org/2023.semeval-1.306/
%U https://doi.org/10.18653/v1/2023.semeval-1.306
%P 2211-2215
Markdown (Informal)
[Ertim at SemEval-2023 Task 2: Fine-tuning of Transformer Language Models and External Knowledge Leveraging for NER in Farsi, English, French and Chinese](https://aclanthology.org/2023.semeval-1.306/) (Deturck et al., SemEval 2023)
ACL
- Kevin Deturck, Pierre Magistry, Bénédicte Diot-Parvaz Ahmad, Ilaine Wang, Damien Nouvel, and Hugo Lafayette. 2023. Ertim at SemEval-2023 Task 2: Fine-tuning of Transformer Language Models and External Knowledge Leveraging for NER in Farsi, English, French and Chinese. In Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023), pages 2211–2215, Toronto, Canada. Association for Computational Linguistics.