@inproceedings{zeng-etal-2023-question,
title = "Question Generation to Elicit Users' Food Preferences by Considering the Semantic Content",
author = "Zeng, Jie and
Nakano, Yukiko and
Sakato, Tatsuya",
editor = "Stoyanchev, Svetlana and
Joty, Shafiq and
Schlangen, David and
Dusek, Ondrej and
Kennington, Casey and
Alikhani, Malihe",
booktitle = "Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue",
month = sep,
year = "2023",
address = "Prague, Czechia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.sigdial-1.18/",
doi = "10.18653/v1/2023.sigdial-1.18",
pages = "190--196",
abstract = "To obtain a better understanding of user preferences in providing tailored services, dialogue systems have to generate semi-structured interviews that require flexible dialogue control while following a topic guide to accomplish the purpose of the interview. Toward this goal, this study proposes a semantics-aware GPT-3 fine-tuning model that generates interviews to acquire users' food preferences. The model was trained using dialogue history and semantic representation constructed from the communicative function and semantic content of the utterance. Using two baseline models: zero-shot ChatGPT and fine-tuned GPT-3, we conducted a user study for subjective evaluations alongside automatic objective evaluations. In the user study, in impression rating, the outputs of the proposed model were superior to those of baseline models and comparable to real human interviews in terms of eliciting the interviewees' food preferences."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zeng-etal-2023-question">
<titleInfo>
<title>Question Generation to Elicit Users’ Food Preferences by Considering the Semantic Content</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jie</namePart>
<namePart type="family">Zeng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yukiko</namePart>
<namePart type="family">Nakano</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tatsuya</namePart>
<namePart type="family">Sakato</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue</title>
</titleInfo>
<name type="personal">
<namePart type="given">Svetlana</namePart>
<namePart type="family">Stoyanchev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shafiq</namePart>
<namePart type="family">Joty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Schlangen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ondrej</namePart>
<namePart type="family">Dusek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Casey</namePart>
<namePart type="family">Kennington</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Malihe</namePart>
<namePart type="family">Alikhani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Prague, Czechia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>To obtain a better understanding of user preferences in providing tailored services, dialogue systems have to generate semi-structured interviews that require flexible dialogue control while following a topic guide to accomplish the purpose of the interview. Toward this goal, this study proposes a semantics-aware GPT-3 fine-tuning model that generates interviews to acquire users’ food preferences. The model was trained using dialogue history and semantic representation constructed from the communicative function and semantic content of the utterance. Using two baseline models: zero-shot ChatGPT and fine-tuned GPT-3, we conducted a user study for subjective evaluations alongside automatic objective evaluations. In the user study, in impression rating, the outputs of the proposed model were superior to those of baseline models and comparable to real human interviews in terms of eliciting the interviewees’ food preferences.</abstract>
<identifier type="citekey">zeng-etal-2023-question</identifier>
<identifier type="doi">10.18653/v1/2023.sigdial-1.18</identifier>
<location>
<url>https://aclanthology.org/2023.sigdial-1.18/</url>
</location>
<part>
<date>2023-09</date>
<extent unit="page">
<start>190</start>
<end>196</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Question Generation to Elicit Users’ Food Preferences by Considering the Semantic Content
%A Zeng, Jie
%A Nakano, Yukiko
%A Sakato, Tatsuya
%Y Stoyanchev, Svetlana
%Y Joty, Shafiq
%Y Schlangen, David
%Y Dusek, Ondrej
%Y Kennington, Casey
%Y Alikhani, Malihe
%S Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue
%D 2023
%8 September
%I Association for Computational Linguistics
%C Prague, Czechia
%F zeng-etal-2023-question
%X To obtain a better understanding of user preferences in providing tailored services, dialogue systems have to generate semi-structured interviews that require flexible dialogue control while following a topic guide to accomplish the purpose of the interview. Toward this goal, this study proposes a semantics-aware GPT-3 fine-tuning model that generates interviews to acquire users’ food preferences. The model was trained using dialogue history and semantic representation constructed from the communicative function and semantic content of the utterance. Using two baseline models: zero-shot ChatGPT and fine-tuned GPT-3, we conducted a user study for subjective evaluations alongside automatic objective evaluations. In the user study, in impression rating, the outputs of the proposed model were superior to those of baseline models and comparable to real human interviews in terms of eliciting the interviewees’ food preferences.
%R 10.18653/v1/2023.sigdial-1.18
%U https://aclanthology.org/2023.sigdial-1.18/
%U https://doi.org/10.18653/v1/2023.sigdial-1.18
%P 190-196
Markdown (Informal)
[Question Generation to Elicit Users’ Food Preferences by Considering the Semantic Content](https://aclanthology.org/2023.sigdial-1.18/) (Zeng et al., SIGDIAL 2023)
ACL