@inproceedings{liesenfeld-etal-2023-timing,
title = "The timing bottleneck: Why timing and overlap are mission-critical for conversational user interfaces, speech recognition and dialogue systems",
author = "Liesenfeld, Andreas and
Lopez, Alianda and
Dingemanse, Mark",
editor = "Stoyanchev, Svetlana and
Joty, Shafiq and
Schlangen, David and
Dusek, Ondrej and
Kennington, Casey and
Alikhani, Malihe",
booktitle = "Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue",
month = sep,
year = "2023",
address = "Prague, Czechia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.sigdial-1.45",
doi = "10.18653/v1/2023.sigdial-1.45",
pages = "482--495",
abstract = "Speech recognition systems are a key intermediary in voice-driven human-computer interaction. Although speech recognition works well for pristine monologic audio, real-life use cases in open-ended interactive settings still present many challenges. We argue that timing is mission-critical for dialogue systems, and evaluate 5 major commercial ASR systems for their conversational and multilingual support. We find that word error rates for natural conversational data in 6 languages remain abysmal, and that overlap remains a key challenge (study 1). This impacts especially the recognition of conversational words (study 2), and in turn has dire consequences for downstream intent recognition (study 3). Our findings help to evaluate the current state of conversational ASR, contribute towards multidimensional error analysis and evaluation, and identify phenomena that need most attention on the way to build robust interactive speech technologies.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liesenfeld-etal-2023-timing">
<titleInfo>
<title>The timing bottleneck: Why timing and overlap are mission-critical for conversational user interfaces, speech recognition and dialogue systems</title>
</titleInfo>
<name type="personal">
<namePart type="given">Andreas</namePart>
<namePart type="family">Liesenfeld</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alianda</namePart>
<namePart type="family">Lopez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mark</namePart>
<namePart type="family">Dingemanse</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue</title>
</titleInfo>
<name type="personal">
<namePart type="given">Svetlana</namePart>
<namePart type="family">Stoyanchev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shafiq</namePart>
<namePart type="family">Joty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Schlangen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ondrej</namePart>
<namePart type="family">Dusek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Casey</namePart>
<namePart type="family">Kennington</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Malihe</namePart>
<namePart type="family">Alikhani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Prague, Czechia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Speech recognition systems are a key intermediary in voice-driven human-computer interaction. Although speech recognition works well for pristine monologic audio, real-life use cases in open-ended interactive settings still present many challenges. We argue that timing is mission-critical for dialogue systems, and evaluate 5 major commercial ASR systems for their conversational and multilingual support. We find that word error rates for natural conversational data in 6 languages remain abysmal, and that overlap remains a key challenge (study 1). This impacts especially the recognition of conversational words (study 2), and in turn has dire consequences for downstream intent recognition (study 3). Our findings help to evaluate the current state of conversational ASR, contribute towards multidimensional error analysis and evaluation, and identify phenomena that need most attention on the way to build robust interactive speech technologies.</abstract>
<identifier type="citekey">liesenfeld-etal-2023-timing</identifier>
<identifier type="doi">10.18653/v1/2023.sigdial-1.45</identifier>
<location>
<url>https://aclanthology.org/2023.sigdial-1.45</url>
</location>
<part>
<date>2023-09</date>
<extent unit="page">
<start>482</start>
<end>495</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T The timing bottleneck: Why timing and overlap are mission-critical for conversational user interfaces, speech recognition and dialogue systems
%A Liesenfeld, Andreas
%A Lopez, Alianda
%A Dingemanse, Mark
%Y Stoyanchev, Svetlana
%Y Joty, Shafiq
%Y Schlangen, David
%Y Dusek, Ondrej
%Y Kennington, Casey
%Y Alikhani, Malihe
%S Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue
%D 2023
%8 September
%I Association for Computational Linguistics
%C Prague, Czechia
%F liesenfeld-etal-2023-timing
%X Speech recognition systems are a key intermediary in voice-driven human-computer interaction. Although speech recognition works well for pristine monologic audio, real-life use cases in open-ended interactive settings still present many challenges. We argue that timing is mission-critical for dialogue systems, and evaluate 5 major commercial ASR systems for their conversational and multilingual support. We find that word error rates for natural conversational data in 6 languages remain abysmal, and that overlap remains a key challenge (study 1). This impacts especially the recognition of conversational words (study 2), and in turn has dire consequences for downstream intent recognition (study 3). Our findings help to evaluate the current state of conversational ASR, contribute towards multidimensional error analysis and evaluation, and identify phenomena that need most attention on the way to build robust interactive speech technologies.
%R 10.18653/v1/2023.sigdial-1.45
%U https://aclanthology.org/2023.sigdial-1.45
%U https://doi.org/10.18653/v1/2023.sigdial-1.45
%P 482-495
Markdown (Informal)
[The timing bottleneck: Why timing and overlap are mission-critical for conversational user interfaces, speech recognition and dialogue systems](https://aclanthology.org/2023.sigdial-1.45) (Liesenfeld et al., SIGDIAL 2023)
ACL