Query Encoder Distillation via Embedding Alignment is a Strong Baseline Method to Boost Dense Retriever Online Efficiency

Yuxuan Wang, Lyu Hong


Anthology ID:
2023.sustainlp-1.23
Volume:
Proceedings of The Fourth Workshop on Simple and Efficient Natural Language Processing (SustaiNLP)
Month:
July
Year:
2023
Address:
Toronto, Canada (Hybrid)
Editors:
Nafise Sadat Moosavi, Iryna Gurevych, Yufang Hou, Gyuwan Kim, Young Jin Kim, Tal Schuster, Ameeta Agrawal
Venue:
sustainlp
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
290–298
Language:
URL:
https://aclanthology.org/2023.sustainlp-1.23
DOI:
10.18653/v1/2023.sustainlp-1.23
Bibkey:
Cite (ACL):
Yuxuan Wang and Lyu Hong. 2023. Query Encoder Distillation via Embedding Alignment is a Strong Baseline Method to Boost Dense Retriever Online Efficiency. In Proceedings of The Fourth Workshop on Simple and Efficient Natural Language Processing (SustaiNLP), pages 290–298, Toronto, Canada (Hybrid). Association for Computational Linguistics.
Cite (Informal):
Query Encoder Distillation via Embedding Alignment is a Strong Baseline Method to Boost Dense Retriever Online Efficiency (Wang & Hong, sustainlp 2023)
Copy Citation:
PDF:
https://aclanthology.org/2023.sustainlp-1.23.pdf
Video:
 https://aclanthology.org/2023.sustainlp-1.23.mp4