@article{si-etal-2023-sub,
title = "Sub-Character Tokenization for {C}hinese Pretrained Language Models",
author = "Si, Chenglei and
Zhang, Zhengyan and
Chen, Yingfa and
Qi, Fanchao and
Wang, Xiaozhi and
Liu, Zhiyuan and
Wang, Yasheng and
Liu, Qun and
Sun, Maosong",
journal = "Transactions of the Association for Computational Linguistics",
volume = "11",
year = "2023",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/2023.tacl-1.28/",
doi = "10.1162/tacl_a_00560",
pages = "469--487",
abstract = "Tokenization is fundamental to pretrained language models (PLMs). Existing tokenization methods for Chinese PLMs typically treat each character as an indivisible token. However, they ignore the unique feature of the Chinese writing system where additional linguistic information exists below the character level, i.e., at the sub-character level. To utilize such information, we propose sub-character (SubChar for short) tokenization. Specifically, we first encode the input text by converting each Chinese character into a short sequence based on its glyph or pronunciation, and then construct the vocabulary based on the encoded text with sub-word segmentation. Experimental results show that SubChar tokenizers have two main advantages over existing tokenizers: 1) They can tokenize inputs into much shorter sequences, thus improving the computational efficiency. 2) Pronunciation-based SubChar tokenizers can encode Chinese homophones into the same transliteration sequences and produce the same tokenization output, hence being robust to homophone typos. At the same time, models trained with SubChar tokenizers perform competitively on downstream tasks. We release our code and models at \url{https://github.com/thunlp/SubCharTokenization} to facilitate future work."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="si-etal-2023-sub">
<titleInfo>
<title>Sub-Character Tokenization for Chinese Pretrained Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chenglei</namePart>
<namePart type="family">Si</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhengyan</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yingfa</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fanchao</namePart>
<namePart type="family">Qi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaozhi</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhiyuan</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yasheng</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qun</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maosong</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre authority="bibutilsgt">journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>Transactions of the Association for Computational Linguistics</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>MIT Press</publisher>
<place>
<placeTerm type="text">Cambridge, MA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre authority="bibutilsgt">academic journal</genre>
</relatedItem>
<abstract>Tokenization is fundamental to pretrained language models (PLMs). Existing tokenization methods for Chinese PLMs typically treat each character as an indivisible token. However, they ignore the unique feature of the Chinese writing system where additional linguistic information exists below the character level, i.e., at the sub-character level. To utilize such information, we propose sub-character (SubChar for short) tokenization. Specifically, we first encode the input text by converting each Chinese character into a short sequence based on its glyph or pronunciation, and then construct the vocabulary based on the encoded text with sub-word segmentation. Experimental results show that SubChar tokenizers have two main advantages over existing tokenizers: 1) They can tokenize inputs into much shorter sequences, thus improving the computational efficiency. 2) Pronunciation-based SubChar tokenizers can encode Chinese homophones into the same transliteration sequences and produce the same tokenization output, hence being robust to homophone typos. At the same time, models trained with SubChar tokenizers perform competitively on downstream tasks. We release our code and models at https://github.com/thunlp/SubCharTokenization to facilitate future work.</abstract>
<identifier type="citekey">si-etal-2023-sub</identifier>
<identifier type="doi">10.1162/tacl_a_00560</identifier>
<location>
<url>https://aclanthology.org/2023.tacl-1.28/</url>
</location>
<part>
<date>2023</date>
<detail type="volume"><number>11</number></detail>
<extent unit="page">
<start>469</start>
<end>487</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Journal Article
%T Sub-Character Tokenization for Chinese Pretrained Language Models
%A Si, Chenglei
%A Zhang, Zhengyan
%A Chen, Yingfa
%A Qi, Fanchao
%A Wang, Xiaozhi
%A Liu, Zhiyuan
%A Wang, Yasheng
%A Liu, Qun
%A Sun, Maosong
%J Transactions of the Association for Computational Linguistics
%D 2023
%V 11
%I MIT Press
%C Cambridge, MA
%F si-etal-2023-sub
%X Tokenization is fundamental to pretrained language models (PLMs). Existing tokenization methods for Chinese PLMs typically treat each character as an indivisible token. However, they ignore the unique feature of the Chinese writing system where additional linguistic information exists below the character level, i.e., at the sub-character level. To utilize such information, we propose sub-character (SubChar for short) tokenization. Specifically, we first encode the input text by converting each Chinese character into a short sequence based on its glyph or pronunciation, and then construct the vocabulary based on the encoded text with sub-word segmentation. Experimental results show that SubChar tokenizers have two main advantages over existing tokenizers: 1) They can tokenize inputs into much shorter sequences, thus improving the computational efficiency. 2) Pronunciation-based SubChar tokenizers can encode Chinese homophones into the same transliteration sequences and produce the same tokenization output, hence being robust to homophone typos. At the same time, models trained with SubChar tokenizers perform competitively on downstream tasks. We release our code and models at https://github.com/thunlp/SubCharTokenization to facilitate future work.
%R 10.1162/tacl_a_00560
%U https://aclanthology.org/2023.tacl-1.28/
%U https://doi.org/10.1162/tacl_a_00560
%P 469-487
Markdown (Informal)
[Sub-Character Tokenization for Chinese Pretrained Language Models](https://aclanthology.org/2023.tacl-1.28/) (Si et al., TACL 2023)
ACL