@article{riley-etal-2023-frmt,
title = "{FRMT}: A Benchmark for Few-Shot Region-Aware Machine Translation",
author = "Riley, Parker and
Dozat, Timothy and
Botha, Jan A. and
Garcia, Xavier and
Garrette, Dan and
Riesa, Jason and
Firat, Orhan and
Constant, Noah",
journal = "Transactions of the Association for Computational Linguistics",
volume = "11",
year = "2023",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/2023.tacl-1.39",
doi = "10.1162/tacl_a_00568",
pages = "671--685",
abstract = "We present FRMT, a new dataset and evaluation benchmark for Few-shot Region-aware Machine Translation, a type of style-targeted translation. The dataset consists of professional translations from English into two regional variants each of Portuguese and Mandarin Chinese. Source documents are selected to enable detailed analysis of phenomena of interest, including lexically distinct terms and distractor terms. We explore automatic evaluation metrics for FRMT and validate their correlation with expert human evaluation across both region-matched and mismatched rating scenarios. Finally, we present a number of baseline models for this task, and offer guidelines for how researchers can train, evaluate, and compare their own models. Our dataset and evaluation code are publicly available: \url{https://bit.ly/frmt-task}.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="riley-etal-2023-frmt">
<titleInfo>
<title>FRMT: A Benchmark for Few-Shot Region-Aware Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Parker</namePart>
<namePart type="family">Riley</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Timothy</namePart>
<namePart type="family">Dozat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="given">A</namePart>
<namePart type="family">Botha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xavier</namePart>
<namePart type="family">Garcia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Garrette</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jason</namePart>
<namePart type="family">Riesa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Orhan</namePart>
<namePart type="family">Firat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Noah</namePart>
<namePart type="family">Constant</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre authority="bibutilsgt">journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>Transactions of the Association for Computational Linguistics</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>MIT Press</publisher>
<place>
<placeTerm type="text">Cambridge, MA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre authority="bibutilsgt">academic journal</genre>
</relatedItem>
<abstract>We present FRMT, a new dataset and evaluation benchmark for Few-shot Region-aware Machine Translation, a type of style-targeted translation. The dataset consists of professional translations from English into two regional variants each of Portuguese and Mandarin Chinese. Source documents are selected to enable detailed analysis of phenomena of interest, including lexically distinct terms and distractor terms. We explore automatic evaluation metrics for FRMT and validate their correlation with expert human evaluation across both region-matched and mismatched rating scenarios. Finally, we present a number of baseline models for this task, and offer guidelines for how researchers can train, evaluate, and compare their own models. Our dataset and evaluation code are publicly available: https://bit.ly/frmt-task.</abstract>
<identifier type="citekey">riley-etal-2023-frmt</identifier>
<identifier type="doi">10.1162/tacl_a_00568</identifier>
<location>
<url>https://aclanthology.org/2023.tacl-1.39</url>
</location>
<part>
<date>2023</date>
<detail type="volume"><number>11</number></detail>
<extent unit="page">
<start>671</start>
<end>685</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Journal Article
%T FRMT: A Benchmark for Few-Shot Region-Aware Machine Translation
%A Riley, Parker
%A Dozat, Timothy
%A Botha, Jan A.
%A Garcia, Xavier
%A Garrette, Dan
%A Riesa, Jason
%A Firat, Orhan
%A Constant, Noah
%J Transactions of the Association for Computational Linguistics
%D 2023
%V 11
%I MIT Press
%C Cambridge, MA
%F riley-etal-2023-frmt
%X We present FRMT, a new dataset and evaluation benchmark for Few-shot Region-aware Machine Translation, a type of style-targeted translation. The dataset consists of professional translations from English into two regional variants each of Portuguese and Mandarin Chinese. Source documents are selected to enable detailed analysis of phenomena of interest, including lexically distinct terms and distractor terms. We explore automatic evaluation metrics for FRMT and validate their correlation with expert human evaluation across both region-matched and mismatched rating scenarios. Finally, we present a number of baseline models for this task, and offer guidelines for how researchers can train, evaluate, and compare their own models. Our dataset and evaluation code are publicly available: https://bit.ly/frmt-task.
%R 10.1162/tacl_a_00568
%U https://aclanthology.org/2023.tacl-1.39
%U https://doi.org/10.1162/tacl_a_00568
%P 671-685
Markdown (Informal)
[FRMT: A Benchmark for Few-Shot Region-Aware Machine Translation](https://aclanthology.org/2023.tacl-1.39) (Riley et al., TACL 2023)
ACL