@inproceedings{xu-etal-2024-pride,
title = "Pride and Prejudice: {LLM} Amplifies Self-Bias in Self-Refinement",
author = "Xu, Wenda and
Zhu, Guanglei and
Zhao, Xuandong and
Pan, Liangming and
Li, Lei and
Wang, William",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.acl-long.826",
doi = "10.18653/v1/2024.acl-long.826",
pages = "15474--15492",
abstract = "Recent studies show that large language models (LLMs) improve their performance through self-feedback on certain tasks while degrade on others. We discovered that such a contrary is due to LLM{'}s bias in evaluating their own output. In this paper, we formally define LLM{'}s self-bias {--} the tendency to favor its own generation {--} using two statistics. We analyze six LLMs (GPT-4, GPT-3.5, Gemini, LLaMA2, Mixtral and DeepSeek) on translation, constrained text generation, and mathematical reasoning tasks. We find that self-bias is prevalent in all examined LLMs across multiple languages and tasks. Our analysis reveals that while the self-refine pipeline improves the fluency and understandability of model outputs, it further amplifies self-bias. To mitigate such biases, we discover that larger model size and external feedback with accurate assessment can significantly reduce bias in the self-refine pipeline, leading to actual performance improvement in downstream tasks. The code and data are released at https://github.com/xu1998hz/llm{\_}self{\_}bias.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="xu-etal-2024-pride">
<titleInfo>
<title>Pride and Prejudice: LLM Amplifies Self-Bias in Self-Refinement</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wenda</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guanglei</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuandong</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Liangming</namePart>
<namePart type="family">Pan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lei</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">William</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Recent studies show that large language models (LLMs) improve their performance through self-feedback on certain tasks while degrade on others. We discovered that such a contrary is due to LLM’s bias in evaluating their own output. In this paper, we formally define LLM’s self-bias – the tendency to favor its own generation – using two statistics. We analyze six LLMs (GPT-4, GPT-3.5, Gemini, LLaMA2, Mixtral and DeepSeek) on translation, constrained text generation, and mathematical reasoning tasks. We find that self-bias is prevalent in all examined LLMs across multiple languages and tasks. Our analysis reveals that while the self-refine pipeline improves the fluency and understandability of model outputs, it further amplifies self-bias. To mitigate such biases, we discover that larger model size and external feedback with accurate assessment can significantly reduce bias in the self-refine pipeline, leading to actual performance improvement in downstream tasks. The code and data are released at https://github.com/xu1998hz/llm_self_bias.</abstract>
<identifier type="citekey">xu-etal-2024-pride</identifier>
<identifier type="doi">10.18653/v1/2024.acl-long.826</identifier>
<location>
<url>https://aclanthology.org/2024.acl-long.826</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>15474</start>
<end>15492</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Pride and Prejudice: LLM Amplifies Self-Bias in Self-Refinement
%A Xu, Wenda
%A Zhu, Guanglei
%A Zhao, Xuandong
%A Pan, Liangming
%A Li, Lei
%A Wang, William
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F xu-etal-2024-pride
%X Recent studies show that large language models (LLMs) improve their performance through self-feedback on certain tasks while degrade on others. We discovered that such a contrary is due to LLM’s bias in evaluating their own output. In this paper, we formally define LLM’s self-bias – the tendency to favor its own generation – using two statistics. We analyze six LLMs (GPT-4, GPT-3.5, Gemini, LLaMA2, Mixtral and DeepSeek) on translation, constrained text generation, and mathematical reasoning tasks. We find that self-bias is prevalent in all examined LLMs across multiple languages and tasks. Our analysis reveals that while the self-refine pipeline improves the fluency and understandability of model outputs, it further amplifies self-bias. To mitigate such biases, we discover that larger model size and external feedback with accurate assessment can significantly reduce bias in the self-refine pipeline, leading to actual performance improvement in downstream tasks. The code and data are released at https://github.com/xu1998hz/llm_self_bias.
%R 10.18653/v1/2024.acl-long.826
%U https://aclanthology.org/2024.acl-long.826
%U https://doi.org/10.18653/v1/2024.acl-long.826
%P 15474-15492
Markdown (Informal)
[Pride and Prejudice: LLM Amplifies Self-Bias in Self-Refinement](https://aclanthology.org/2024.acl-long.826) (Xu et al., ACL 2024)
ACL
- Wenda Xu, Guanglei Zhu, Xuandong Zhao, Liangming Pan, Lei Li, and William Wang. 2024. Pride and Prejudice: LLM Amplifies Self-Bias in Self-Refinement. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 15474–15492, Bangkok, Thailand. Association for Computational Linguistics.