@inproceedings{goldsack-etal-2024-overview,
title = "Overview of the {B}io{L}ay{S}umm 2024 Shared Task on the Lay Summarization of Biomedical Research Articles",
author = "Goldsack, Tomas and
Scarton, Carolina and
Shardlow, Matthew and
Lin, Chenghua",
editor = "Demner-Fushman, Dina and
Ananiadou, Sophia and
Miwa, Makoto and
Roberts, Kirk and
Tsujii, Junichi",
booktitle = "Proceedings of the 23rd Workshop on Biomedical Natural Language Processing",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.bionlp-1.10",
doi = "10.18653/v1/2024.bionlp-1.10",
pages = "122--131",
abstract = "This paper presents the setup and results of the second edition of the BioLaySumm shared task on the Lay Summarisation of Biomedical Research Articles, hosted at the BioNLP Workshop at ACL 2024. In this task edition, we aim to build on the first edition{'}s success by further increasing research interest in this important task and encouraging participants to explore novel approaches that will help advance the state-of-the-art. Encouragingly, we found research interest in the task to be high, with this edition of the task attracting a total of 53 participating teams, a significant increase in engagement from the previous edition. Overall, our results show that a broad range of innovative approaches were adopted by task participants, with a predictable shift towards the use of Large Language Models (LLMs).",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="goldsack-etal-2024-overview">
<titleInfo>
<title>Overview of the BioLaySumm 2024 Shared Task on the Lay Summarization of Biomedical Research Articles</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tomas</namePart>
<namePart type="family">Goldsack</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolina</namePart>
<namePart type="family">Scarton</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthew</namePart>
<namePart type="family">Shardlow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chenghua</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 23rd Workshop on Biomedical Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dina</namePart>
<namePart type="family">Demner-Fushman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sophia</namePart>
<namePart type="family">Ananiadou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Makoto</namePart>
<namePart type="family">Miwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kirk</namePart>
<namePart type="family">Roberts</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents the setup and results of the second edition of the BioLaySumm shared task on the Lay Summarisation of Biomedical Research Articles, hosted at the BioNLP Workshop at ACL 2024. In this task edition, we aim to build on the first edition’s success by further increasing research interest in this important task and encouraging participants to explore novel approaches that will help advance the state-of-the-art. Encouragingly, we found research interest in the task to be high, with this edition of the task attracting a total of 53 participating teams, a significant increase in engagement from the previous edition. Overall, our results show that a broad range of innovative approaches were adopted by task participants, with a predictable shift towards the use of Large Language Models (LLMs).</abstract>
<identifier type="citekey">goldsack-etal-2024-overview</identifier>
<identifier type="doi">10.18653/v1/2024.bionlp-1.10</identifier>
<location>
<url>https://aclanthology.org/2024.bionlp-1.10</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>122</start>
<end>131</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Overview of the BioLaySumm 2024 Shared Task on the Lay Summarization of Biomedical Research Articles
%A Goldsack, Tomas
%A Scarton, Carolina
%A Shardlow, Matthew
%A Lin, Chenghua
%Y Demner-Fushman, Dina
%Y Ananiadou, Sophia
%Y Miwa, Makoto
%Y Roberts, Kirk
%Y Tsujii, Junichi
%S Proceedings of the 23rd Workshop on Biomedical Natural Language Processing
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F goldsack-etal-2024-overview
%X This paper presents the setup and results of the second edition of the BioLaySumm shared task on the Lay Summarisation of Biomedical Research Articles, hosted at the BioNLP Workshop at ACL 2024. In this task edition, we aim to build on the first edition’s success by further increasing research interest in this important task and encouraging participants to explore novel approaches that will help advance the state-of-the-art. Encouragingly, we found research interest in the task to be high, with this edition of the task attracting a total of 53 participating teams, a significant increase in engagement from the previous edition. Overall, our results show that a broad range of innovative approaches were adopted by task participants, with a predictable shift towards the use of Large Language Models (LLMs).
%R 10.18653/v1/2024.bionlp-1.10
%U https://aclanthology.org/2024.bionlp-1.10
%U https://doi.org/10.18653/v1/2024.bionlp-1.10
%P 122-131
Markdown (Informal)
[Overview of the BioLaySumm 2024 Shared Task on the Lay Summarization of Biomedical Research Articles](https://aclanthology.org/2024.bionlp-1.10) (Goldsack et al., BioNLP-WS 2024)
ACL