@inproceedings{simancek-vydiswaran-2024-handling,
title = "Handling Name Errors of a {BERT}-Based De-Identification System: Insights from Stratified Sampling and {M}arkov-based Pseudonymization",
author = "Simancek, Dalton and
Vydiswaran, VG Vinod",
editor = {Volodina, Elena and
Alfter, David and
Dobnik, Simon and
Lindstr{\"o}m Tiedemann, Therese and
Mu{\~n}oz S{\'a}nchez, Ricardo and
Szawerna, Maria Irena and
Vu, Xuan-Son},
booktitle = "Proceedings of the Workshop on Computational Approaches to Language Data Pseudonymization (CALD-pseudo 2024)",
month = mar,
year = "2024",
address = "St. Julian{'}s, Malta",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.caldpseudo-1.1",
pages = "1--7",
abstract = "Missed recognition of named entities while de-identifying clinical narratives poses a critical challenge in protecting patient-sensitive health information. Mitigating name recognition errors is essential to minimize risk of patient re-identification. In this paper, we emphasize the need for stratified sampling and enhanced contextual considerations concerning Name Tokens using a fine-tuned Longformer BERT model for clinical text de-identifcation. We introduce a Hidden in Plain Sight (HIPS) Markov-based replacement technique for names to mask name recognition misses, revealing a significant reduction in name leakage rates. Our experimental results underscore the impact on addressing name recognition challenges in BERT-based de-identification systems for heightened privacy protection in electronic health records.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="simancek-vydiswaran-2024-handling">
<titleInfo>
<title>Handling Name Errors of a BERT-Based De-Identification System: Insights from Stratified Sampling and Markov-based Pseudonymization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dalton</namePart>
<namePart type="family">Simancek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">VG</namePart>
<namePart type="given">Vinod</namePart>
<namePart type="family">Vydiswaran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-03</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Workshop on Computational Approaches to Language Data Pseudonymization (CALD-pseudo 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Elena</namePart>
<namePart type="family">Volodina</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Alfter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Simon</namePart>
<namePart type="family">Dobnik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Therese</namePart>
<namePart type="family">Lindström Tiedemann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ricardo</namePart>
<namePart type="family">Muñoz Sánchez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="given">Irena</namePart>
<namePart type="family">Szawerna</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuan-Son</namePart>
<namePart type="family">Vu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">St. Julian’s, Malta</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Missed recognition of named entities while de-identifying clinical narratives poses a critical challenge in protecting patient-sensitive health information. Mitigating name recognition errors is essential to minimize risk of patient re-identification. In this paper, we emphasize the need for stratified sampling and enhanced contextual considerations concerning Name Tokens using a fine-tuned Longformer BERT model for clinical text de-identifcation. We introduce a Hidden in Plain Sight (HIPS) Markov-based replacement technique for names to mask name recognition misses, revealing a significant reduction in name leakage rates. Our experimental results underscore the impact on addressing name recognition challenges in BERT-based de-identification systems for heightened privacy protection in electronic health records.</abstract>
<identifier type="citekey">simancek-vydiswaran-2024-handling</identifier>
<location>
<url>https://aclanthology.org/2024.caldpseudo-1.1</url>
</location>
<part>
<date>2024-03</date>
<extent unit="page">
<start>1</start>
<end>7</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Handling Name Errors of a BERT-Based De-Identification System: Insights from Stratified Sampling and Markov-based Pseudonymization
%A Simancek, Dalton
%A Vydiswaran, VG Vinod
%Y Volodina, Elena
%Y Alfter, David
%Y Dobnik, Simon
%Y Lindström Tiedemann, Therese
%Y Muñoz Sánchez, Ricardo
%Y Szawerna, Maria Irena
%Y Vu, Xuan-Son
%S Proceedings of the Workshop on Computational Approaches to Language Data Pseudonymization (CALD-pseudo 2024)
%D 2024
%8 March
%I Association for Computational Linguistics
%C St. Julian’s, Malta
%F simancek-vydiswaran-2024-handling
%X Missed recognition of named entities while de-identifying clinical narratives poses a critical challenge in protecting patient-sensitive health information. Mitigating name recognition errors is essential to minimize risk of patient re-identification. In this paper, we emphasize the need for stratified sampling and enhanced contextual considerations concerning Name Tokens using a fine-tuned Longformer BERT model for clinical text de-identifcation. We introduce a Hidden in Plain Sight (HIPS) Markov-based replacement technique for names to mask name recognition misses, revealing a significant reduction in name leakage rates. Our experimental results underscore the impact on addressing name recognition challenges in BERT-based de-identification systems for heightened privacy protection in electronic health records.
%U https://aclanthology.org/2024.caldpseudo-1.1
%P 1-7
Markdown (Informal)
[Handling Name Errors of a BERT-Based De-Identification System: Insights from Stratified Sampling and Markov-based Pseudonymization](https://aclanthology.org/2024.caldpseudo-1.1) (Simancek & Vydiswaran, CALD-pseudo-WS 2024)
ACL