@inproceedings{suppa-etal-2024-bryndza,
title = "Bryndza at {C}limate{A}ctivism 2024: Stance, Target and Hate Event Detection via Retrieval-Augmented {GPT}-4 and {LL}a{MA}",
author = "Suppa, Marek and
Skala, Daniel and
Jass, Daniela and
Sucik, Samuel and
Svec, Andrej and
Hraska, Peter",
editor = {H{\"u}rriyeto{\u{g}}lu, Ali and
Tanev, Hristo and
Thapa, Surendrabikram and
Uludo{\u{g}}an, G{\"o}k{\c{c}}e},
booktitle = "Proceedings of the 7th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2024)",
month = mar,
year = "2024",
address = "St. Julians, Malta",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.case-1.23/",
pages = "166--177",
abstract = "This study details our approach for the CASE 2024 Shared Task on Climate Activism Stance and Hate Event Detection, focusing on Hate Speech Detection, Hate Speech Target Identification, and Stance Detection as classification challenges. We explored the capability of Large Language Models (LLMs), particularly GPT-4, in zero- or few-shot settings enhanced by retrieval augmentation and re-ranking for Tweet classification. Our goal was to determine if LLMs could match or surpass traditional methods in this context. We conducted an ablation study with LLaMA for comparison, and our results indicate that our models significantly outperformed the baselines, securing second place in the Target Detection task. The code for our submission is available at https://github.com/NaiveNeuron/bryndza-case-2024"
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="suppa-etal-2024-bryndza">
<titleInfo>
<title>Bryndza at ClimateActivism 2024: Stance, Target and Hate Event Detection via Retrieval-Augmented GPT-4 and LLaMA</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marek</namePart>
<namePart type="family">Suppa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Skala</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniela</namePart>
<namePart type="family">Jass</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Samuel</namePart>
<namePart type="family">Sucik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrej</namePart>
<namePart type="family">Svec</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peter</namePart>
<namePart type="family">Hraska</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-03</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 7th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ali</namePart>
<namePart type="family">Hürriyetoğlu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hristo</namePart>
<namePart type="family">Tanev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Surendrabikram</namePart>
<namePart type="family">Thapa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gökçe</namePart>
<namePart type="family">Uludoğan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">St. Julians, Malta</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This study details our approach for the CASE 2024 Shared Task on Climate Activism Stance and Hate Event Detection, focusing on Hate Speech Detection, Hate Speech Target Identification, and Stance Detection as classification challenges. We explored the capability of Large Language Models (LLMs), particularly GPT-4, in zero- or few-shot settings enhanced by retrieval augmentation and re-ranking for Tweet classification. Our goal was to determine if LLMs could match or surpass traditional methods in this context. We conducted an ablation study with LLaMA for comparison, and our results indicate that our models significantly outperformed the baselines, securing second place in the Target Detection task. The code for our submission is available at https://github.com/NaiveNeuron/bryndza-case-2024</abstract>
<identifier type="citekey">suppa-etal-2024-bryndza</identifier>
<location>
<url>https://aclanthology.org/2024.case-1.23/</url>
</location>
<part>
<date>2024-03</date>
<extent unit="page">
<start>166</start>
<end>177</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Bryndza at ClimateActivism 2024: Stance, Target and Hate Event Detection via Retrieval-Augmented GPT-4 and LLaMA
%A Suppa, Marek
%A Skala, Daniel
%A Jass, Daniela
%A Sucik, Samuel
%A Svec, Andrej
%A Hraska, Peter
%Y Hürriyetoğlu, Ali
%Y Tanev, Hristo
%Y Thapa, Surendrabikram
%Y Uludoğan, Gökçe
%S Proceedings of the 7th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2024)
%D 2024
%8 March
%I Association for Computational Linguistics
%C St. Julians, Malta
%F suppa-etal-2024-bryndza
%X This study details our approach for the CASE 2024 Shared Task on Climate Activism Stance and Hate Event Detection, focusing on Hate Speech Detection, Hate Speech Target Identification, and Stance Detection as classification challenges. We explored the capability of Large Language Models (LLMs), particularly GPT-4, in zero- or few-shot settings enhanced by retrieval augmentation and re-ranking for Tweet classification. Our goal was to determine if LLMs could match or surpass traditional methods in this context. We conducted an ablation study with LLaMA for comparison, and our results indicate that our models significantly outperformed the baselines, securing second place in the Target Detection task. The code for our submission is available at https://github.com/NaiveNeuron/bryndza-case-2024
%U https://aclanthology.org/2024.case-1.23/
%P 166-177
Markdown (Informal)
[Bryndza at ClimateActivism 2024: Stance, Target and Hate Event Detection via Retrieval-Augmented GPT-4 and LLaMA](https://aclanthology.org/2024.case-1.23/) (Suppa et al., CASE 2024)
ACL