@inproceedings{tayal-etal-2024-neuro,
title = "A Neuro-Symbolic Approach to Monitoring Salt Content in Food",
author = "Tayal, Anuja and
Di Eugenio, Barbara and
Salunke, Devika and
Boyd, Andrew D. and
Dickens, Carolyn A. and
Abril, Eulalia P. and
Garcia-Bedoya, Olga and
Allen-Meares, Paula G.",
editor = "Demner-Fushman, Dina and
Ananiadou, Sophia and
Thompson, Paul and
Ondov, Brian",
booktitle = "Proceedings of the First Workshop on Patient-Oriented Language Processing (CL4Health) @ LREC-COLING 2024",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.cl4health-1.11/",
pages = "93--103",
abstract = "We propose a dialogue system that enables heart failure patients to inquire about salt content in foods and help them monitor and reduce salt intake. Addressing the lack of specific datasets for food-based salt content inquiries, we develop a template-based conversational dataset. The dataset is structured to ask clarification questions to identify food items and their salt content. Our findings indicate that while fine-tuning transformer-based models on the dataset yields limited performance, the integration of Neuro-Symbolic Rules significantly enhances the system`s performance. Our experiments show that by integrating neuro-symbolic rules, our system achieves an improvement in joint goal accuracy of over 20{\%} across different data sizes compared to naively fine-tuning transformer-based models."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tayal-etal-2024-neuro">
<titleInfo>
<title>A Neuro-Symbolic Approach to Monitoring Salt Content in Food</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anuja</namePart>
<namePart type="family">Tayal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="family">Di Eugenio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Devika</namePart>
<namePart type="family">Salunke</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrew</namePart>
<namePart type="given">D</namePart>
<namePart type="family">Boyd</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="given">A</namePart>
<namePart type="family">Dickens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eulalia</namePart>
<namePart type="given">P</namePart>
<namePart type="family">Abril</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Olga</namePart>
<namePart type="family">Garcia-Bedoya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paula</namePart>
<namePart type="given">G</namePart>
<namePart type="family">Allen-Meares</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Patient-Oriented Language Processing (CL4Health) @ LREC-COLING 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dina</namePart>
<namePart type="family">Demner-Fushman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sophia</namePart>
<namePart type="family">Ananiadou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paul</namePart>
<namePart type="family">Thompson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Brian</namePart>
<namePart type="family">Ondov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose a dialogue system that enables heart failure patients to inquire about salt content in foods and help them monitor and reduce salt intake. Addressing the lack of specific datasets for food-based salt content inquiries, we develop a template-based conversational dataset. The dataset is structured to ask clarification questions to identify food items and their salt content. Our findings indicate that while fine-tuning transformer-based models on the dataset yields limited performance, the integration of Neuro-Symbolic Rules significantly enhances the system‘s performance. Our experiments show that by integrating neuro-symbolic rules, our system achieves an improvement in joint goal accuracy of over 20% across different data sizes compared to naively fine-tuning transformer-based models.</abstract>
<identifier type="citekey">tayal-etal-2024-neuro</identifier>
<location>
<url>https://aclanthology.org/2024.cl4health-1.11/</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>93</start>
<end>103</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Neuro-Symbolic Approach to Monitoring Salt Content in Food
%A Tayal, Anuja
%A Di Eugenio, Barbara
%A Salunke, Devika
%A Boyd, Andrew D.
%A Dickens, Carolyn A.
%A Abril, Eulalia P.
%A Garcia-Bedoya, Olga
%A Allen-Meares, Paula G.
%Y Demner-Fushman, Dina
%Y Ananiadou, Sophia
%Y Thompson, Paul
%Y Ondov, Brian
%S Proceedings of the First Workshop on Patient-Oriented Language Processing (CL4Health) @ LREC-COLING 2024
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F tayal-etal-2024-neuro
%X We propose a dialogue system that enables heart failure patients to inquire about salt content in foods and help them monitor and reduce salt intake. Addressing the lack of specific datasets for food-based salt content inquiries, we develop a template-based conversational dataset. The dataset is structured to ask clarification questions to identify food items and their salt content. Our findings indicate that while fine-tuning transformer-based models on the dataset yields limited performance, the integration of Neuro-Symbolic Rules significantly enhances the system‘s performance. Our experiments show that by integrating neuro-symbolic rules, our system achieves an improvement in joint goal accuracy of over 20% across different data sizes compared to naively fine-tuning transformer-based models.
%U https://aclanthology.org/2024.cl4health-1.11/
%P 93-103
Markdown (Informal)
[A Neuro-Symbolic Approach to Monitoring Salt Content in Food](https://aclanthology.org/2024.cl4health-1.11/) (Tayal et al., CL4Health 2024)
ACL
- Anuja Tayal, Barbara Di Eugenio, Devika Salunke, Andrew D. Boyd, Carolyn A. Dickens, Eulalia P. Abril, Olga Garcia-Bedoya, and Paula G. Allen-Meares. 2024. A Neuro-Symbolic Approach to Monitoring Salt Content in Food. In Proceedings of the First Workshop on Patient-Oriented Language Processing (CL4Health) @ LREC-COLING 2024, pages 93–103, Torino, Italia. ELRA and ICCL.