@inproceedings{chim-etal-2024-overview,
title = "Overview of the {CLP}sych 2024 Shared Task: Leveraging Large Language Models to Identify Evidence of Suicidality Risk in Online Posts",
author = "Chim, Jenny and
Tsakalidis, Adam and
Gkoumas, Dimitris and
Atzil-Slonim, Dana and
Ophir, Yaakov and
Zirikly, Ayah and
Resnik, Philip and
Liakata, Maria",
editor = "Yates, Andrew and
Desmet, Bart and
Prud{'}hommeaux, Emily and
Zirikly, Ayah and
Bedrick, Steven and
MacAvaney, Sean and
Bar, Kfir and
Ireland, Molly and
Ophir, Yaakov",
booktitle = "Proceedings of the 9th Workshop on Computational Linguistics and Clinical Psychology (CLPsych 2024)",
month = mar,
year = "2024",
address = "St. Julians, Malta",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.clpsych-1.15/",
pages = "177--190",
abstract = "We present the overview of the CLPsych 2024 Shared Task, focusing on leveraging open source Large Language Models (LLMs) for identifying textual evidence that supports the suicidal risk level of individuals on Reddit. In particular, given a Reddit user, their pre- determined suicide risk level ({\textquoteleft}Low', {\textquoteleft}Mod- erate' or {\textquoteleft}High') and all of their posts in the r/SuicideWatch subreddit, we frame the task of identifying relevant pieces of text in their posts supporting their suicidal classification in two ways: (a) on the basis of evidence highlighting (extracting sub-phrases of the posts) and (b) on the basis of generating a summary of such evidence. We annotate a sample of 125 users and introduce evaluation metrics based on (a) BERTScore and (b) natural language inference for the two sub-tasks, respectively. Finally, we provide an overview of the system submissions and summarise the key findings."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chim-etal-2024-overview">
<titleInfo>
<title>Overview of the CLPsych 2024 Shared Task: Leveraging Large Language Models to Identify Evidence of Suicidality Risk in Online Posts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jenny</namePart>
<namePart type="family">Chim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Adam</namePart>
<namePart type="family">Tsakalidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dimitris</namePart>
<namePart type="family">Gkoumas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dana</namePart>
<namePart type="family">Atzil-Slonim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yaakov</namePart>
<namePart type="family">Ophir</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ayah</namePart>
<namePart type="family">Zirikly</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philip</namePart>
<namePart type="family">Resnik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="family">Liakata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-03</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 9th Workshop on Computational Linguistics and Clinical Psychology (CLPsych 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Andrew</namePart>
<namePart type="family">Yates</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bart</namePart>
<namePart type="family">Desmet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="family">Prud’hommeaux</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ayah</namePart>
<namePart type="family">Zirikly</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bedrick</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sean</namePart>
<namePart type="family">MacAvaney</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kfir</namePart>
<namePart type="family">Bar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Molly</namePart>
<namePart type="family">Ireland</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yaakov</namePart>
<namePart type="family">Ophir</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">St. Julians, Malta</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present the overview of the CLPsych 2024 Shared Task, focusing on leveraging open source Large Language Models (LLMs) for identifying textual evidence that supports the suicidal risk level of individuals on Reddit. In particular, given a Reddit user, their pre- determined suicide risk level (‘Low’, ‘Mod- erate’ or ‘High’) and all of their posts in the r/SuicideWatch subreddit, we frame the task of identifying relevant pieces of text in their posts supporting their suicidal classification in two ways: (a) on the basis of evidence highlighting (extracting sub-phrases of the posts) and (b) on the basis of generating a summary of such evidence. We annotate a sample of 125 users and introduce evaluation metrics based on (a) BERTScore and (b) natural language inference for the two sub-tasks, respectively. Finally, we provide an overview of the system submissions and summarise the key findings.</abstract>
<identifier type="citekey">chim-etal-2024-overview</identifier>
<location>
<url>https://aclanthology.org/2024.clpsych-1.15/</url>
</location>
<part>
<date>2024-03</date>
<extent unit="page">
<start>177</start>
<end>190</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Overview of the CLPsych 2024 Shared Task: Leveraging Large Language Models to Identify Evidence of Suicidality Risk in Online Posts
%A Chim, Jenny
%A Tsakalidis, Adam
%A Gkoumas, Dimitris
%A Atzil-Slonim, Dana
%A Ophir, Yaakov
%A Zirikly, Ayah
%A Resnik, Philip
%A Liakata, Maria
%Y Yates, Andrew
%Y Desmet, Bart
%Y Prud’hommeaux, Emily
%Y Zirikly, Ayah
%Y Bedrick, Steven
%Y MacAvaney, Sean
%Y Bar, Kfir
%Y Ireland, Molly
%Y Ophir, Yaakov
%S Proceedings of the 9th Workshop on Computational Linguistics and Clinical Psychology (CLPsych 2024)
%D 2024
%8 March
%I Association for Computational Linguistics
%C St. Julians, Malta
%F chim-etal-2024-overview
%X We present the overview of the CLPsych 2024 Shared Task, focusing on leveraging open source Large Language Models (LLMs) for identifying textual evidence that supports the suicidal risk level of individuals on Reddit. In particular, given a Reddit user, their pre- determined suicide risk level (‘Low’, ‘Mod- erate’ or ‘High’) and all of their posts in the r/SuicideWatch subreddit, we frame the task of identifying relevant pieces of text in their posts supporting their suicidal classification in two ways: (a) on the basis of evidence highlighting (extracting sub-phrases of the posts) and (b) on the basis of generating a summary of such evidence. We annotate a sample of 125 users and introduce evaluation metrics based on (a) BERTScore and (b) natural language inference for the two sub-tasks, respectively. Finally, we provide an overview of the system submissions and summarise the key findings.
%U https://aclanthology.org/2024.clpsych-1.15/
%P 177-190
Markdown (Informal)
[Overview of the CLPsych 2024 Shared Task: Leveraging Large Language Models to Identify Evidence of Suicidality Risk in Online Posts](https://aclanthology.org/2024.clpsych-1.15/) (Chim et al., CLPsych 2024)
ACL
- Jenny Chim, Adam Tsakalidis, Dimitris Gkoumas, Dana Atzil-Slonim, Yaakov Ophir, Ayah Zirikly, Philip Resnik, and Maria Liakata. 2024. Overview of the CLPsych 2024 Shared Task: Leveraging Large Language Models to Identify Evidence of Suicidality Risk in Online Posts. In Proceedings of the 9th Workshop on Computational Linguistics and Clinical Psychology (CLPsych 2024), pages 177–190, St. Julians, Malta. Association for Computational Linguistics.