@inproceedings{de-varda-marelli-2024-locally,
title = "Locally Biased Transformers Better Align with Human Reading Times",
author = "De Varda, Andrea and
Marelli, Marco",
editor = "Kuribayashi, Tatsuki and
Rambelli, Giulia and
Takmaz, Ece and
Wicke, Philipp and
Oseki, Yohei",
booktitle = "Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.cmcl-1.3/",
doi = "10.18653/v1/2024.cmcl-1.3",
pages = "30--36",
abstract = "Recent psycholinguistic theories emphasize the interdependence between linguistic expectations and memory limitations in human language processing. We modify the self-attention mechanism of a transformer model to simulate a lossy context representation, biasing the model`s predictions to give additional weight to the local linguistic context. We show that surprisal estimates from our locally-biased model generally provide a better fit to human psychometric data, underscoring the sensitivity of the human parser to local linguistic information."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="de-varda-marelli-2024-locally">
<titleInfo>
<title>Locally Biased Transformers Better Align with Human Reading Times</title>
</titleInfo>
<name type="personal">
<namePart type="given">Andrea</namePart>
<namePart type="family">De Varda</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="family">Marelli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tatsuki</namePart>
<namePart type="family">Kuribayashi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giulia</namePart>
<namePart type="family">Rambelli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ece</namePart>
<namePart type="family">Takmaz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Wicke</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yohei</namePart>
<namePart type="family">Oseki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Recent psycholinguistic theories emphasize the interdependence between linguistic expectations and memory limitations in human language processing. We modify the self-attention mechanism of a transformer model to simulate a lossy context representation, biasing the model‘s predictions to give additional weight to the local linguistic context. We show that surprisal estimates from our locally-biased model generally provide a better fit to human psychometric data, underscoring the sensitivity of the human parser to local linguistic information.</abstract>
<identifier type="citekey">de-varda-marelli-2024-locally</identifier>
<identifier type="doi">10.18653/v1/2024.cmcl-1.3</identifier>
<location>
<url>https://aclanthology.org/2024.cmcl-1.3/</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>30</start>
<end>36</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Locally Biased Transformers Better Align with Human Reading Times
%A De Varda, Andrea
%A Marelli, Marco
%Y Kuribayashi, Tatsuki
%Y Rambelli, Giulia
%Y Takmaz, Ece
%Y Wicke, Philipp
%Y Oseki, Yohei
%S Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F de-varda-marelli-2024-locally
%X Recent psycholinguistic theories emphasize the interdependence between linguistic expectations and memory limitations in human language processing. We modify the self-attention mechanism of a transformer model to simulate a lossy context representation, biasing the model‘s predictions to give additional weight to the local linguistic context. We show that surprisal estimates from our locally-biased model generally provide a better fit to human psychometric data, underscoring the sensitivity of the human parser to local linguistic information.
%R 10.18653/v1/2024.cmcl-1.3
%U https://aclanthology.org/2024.cmcl-1.3/
%U https://doi.org/10.18653/v1/2024.cmcl-1.3
%P 30-36
Markdown (Informal)
[Locally Biased Transformers Better Align with Human Reading Times](https://aclanthology.org/2024.cmcl-1.3/) (De Varda & Marelli, CMCL 2024)
ACL