@inproceedings{beck-etal-2024-sensitivity,
title = "Sensitivity, Performance, Robustness: Deconstructing the Effect of Sociodemographic Prompting",
author = "Beck, Tilman and
Schuff, Hendrik and
Lauscher, Anne and
Gurevych, Iryna",
editor = "Graham, Yvette and
Purver, Matthew",
booktitle = "Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = mar,
year = "2024",
address = "St. Julian{'}s, Malta",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.eacl-long.159",
pages = "2589--2615",
abstract = "Annotators{'} sociodemographic backgrounds (i.e., the individual compositions of their gender, age, educational background, etc.) have a strong impact on their decisions when working on subjective NLP tasks, such as toxic language detection. Often, heterogeneous backgrounds result in high disagreements. To model this variation, recent work has explored sociodemographic prompting, a technique, which steers the output of prompt-based models towards answers that humans with specific sociodemographic profiles would give. However, the available NLP literature disagrees on the efficacy of this technique {---} it remains unclear for which tasks and scenarios it can help, and the role of the individual factors in sociodemographic prompting is still unexplored. We address this research gap by presenting the largest and most comprehensive study of sociodemographic prompting today. We use it to analyze its influence on model sensitivity, performance and robustness across seven datasets and six instruction-tuned model families. We show that sociodemographic information affects model predictions and can be beneficial for improving zero-shot learning in subjective NLP tasks.However, its outcomes largely vary for different model types, sizes, and datasets, and are subject to large variance with regards to prompt formulations. Most importantly, our results show that sociodemographic prompting should be used with care when used for data annotation or studying LLM alignment.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="beck-etal-2024-sensitivity">
<titleInfo>
<title>Sensitivity, Performance, Robustness: Deconstructing the Effect of Sociodemographic Prompting</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tilman</namePart>
<namePart type="family">Beck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hendrik</namePart>
<namePart type="family">Schuff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anne</namePart>
<namePart type="family">Lauscher</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-03</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yvette</namePart>
<namePart type="family">Graham</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthew</namePart>
<namePart type="family">Purver</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">St. Julian’s, Malta</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Annotators’ sociodemographic backgrounds (i.e., the individual compositions of their gender, age, educational background, etc.) have a strong impact on their decisions when working on subjective NLP tasks, such as toxic language detection. Often, heterogeneous backgrounds result in high disagreements. To model this variation, recent work has explored sociodemographic prompting, a technique, which steers the output of prompt-based models towards answers that humans with specific sociodemographic profiles would give. However, the available NLP literature disagrees on the efficacy of this technique — it remains unclear for which tasks and scenarios it can help, and the role of the individual factors in sociodemographic prompting is still unexplored. We address this research gap by presenting the largest and most comprehensive study of sociodemographic prompting today. We use it to analyze its influence on model sensitivity, performance and robustness across seven datasets and six instruction-tuned model families. We show that sociodemographic information affects model predictions and can be beneficial for improving zero-shot learning in subjective NLP tasks.However, its outcomes largely vary for different model types, sizes, and datasets, and are subject to large variance with regards to prompt formulations. Most importantly, our results show that sociodemographic prompting should be used with care when used for data annotation or studying LLM alignment.</abstract>
<identifier type="citekey">beck-etal-2024-sensitivity</identifier>
<location>
<url>https://aclanthology.org/2024.eacl-long.159</url>
</location>
<part>
<date>2024-03</date>
<extent unit="page">
<start>2589</start>
<end>2615</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Sensitivity, Performance, Robustness: Deconstructing the Effect of Sociodemographic Prompting
%A Beck, Tilman
%A Schuff, Hendrik
%A Lauscher, Anne
%A Gurevych, Iryna
%Y Graham, Yvette
%Y Purver, Matthew
%S Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2024
%8 March
%I Association for Computational Linguistics
%C St. Julian’s, Malta
%F beck-etal-2024-sensitivity
%X Annotators’ sociodemographic backgrounds (i.e., the individual compositions of their gender, age, educational background, etc.) have a strong impact on their decisions when working on subjective NLP tasks, such as toxic language detection. Often, heterogeneous backgrounds result in high disagreements. To model this variation, recent work has explored sociodemographic prompting, a technique, which steers the output of prompt-based models towards answers that humans with specific sociodemographic profiles would give. However, the available NLP literature disagrees on the efficacy of this technique — it remains unclear for which tasks and scenarios it can help, and the role of the individual factors in sociodemographic prompting is still unexplored. We address this research gap by presenting the largest and most comprehensive study of sociodemographic prompting today. We use it to analyze its influence on model sensitivity, performance and robustness across seven datasets and six instruction-tuned model families. We show that sociodemographic information affects model predictions and can be beneficial for improving zero-shot learning in subjective NLP tasks.However, its outcomes largely vary for different model types, sizes, and datasets, and are subject to large variance with regards to prompt formulations. Most importantly, our results show that sociodemographic prompting should be used with care when used for data annotation or studying LLM alignment.
%U https://aclanthology.org/2024.eacl-long.159
%P 2589-2615
Markdown (Informal)
[Sensitivity, Performance, Robustness: Deconstructing the Effect of Sociodemographic Prompting](https://aclanthology.org/2024.eacl-long.159) (Beck et al., EACL 2024)
ACL